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ABSTRACT

Atmospheric aerosol optical property retrieval
with scanning polarimeters

Kirk D. Knobelspiesse

The radiative energy balance of the Earth is controlled by aerosols, clouds and gases, which

scatter and absorb incident solar radiation and emitted infra-red radiation. Climate models

simulate this process, along with the dynamical energy redistribution of the atmosphere

and oceans. In the last decade, climate models have become increasingly accurate as they

include complex processes in a more physical manner. However, the climatic effect of one

component, atmospheric aerosols, continues to remain highly uncertain. Aerosols are short

lived airborne particulate matter of both natural and anthropogenic (human) origin that

have complex interactions with atmospheric radiation, clouds, and chemistry. A complete

understanding of aerosols is limited by the inability of satellite remote sensing instruments

to consistently measure all of the aerosol optical parameters that are required to define

their radiative effects. This is mainly because the retrieval of these parameters is often

underdetermined, and because the aerosol optical signal is difficult to separate from other

signals, such as surface reflection. However, a new class of instruments, called scanning

polarimeters, have the potential to vastly improve orbital retrieval of aerosol optical prop-

erties. These instruments use multiple angles, spectral bands and polarization states, to

provide measurements with maximized information content that can differentiate aerosols

from other scatterers.

This research is an investigation of the aerosol retrieving potential of scanning po-

larimeters that uses data collected by the Research Scanning Polarimeter (RSP) during

several field campaigns. The RSP is the airborne prototype of the Aerosol Polarimetry



Sensor (APS), soon to be launched into orbit as part of the NASA Glory orbital mission.

Field campaign data have already been used to verify the capability of RSP (and APS) to

retrieve aerosol properties in cloudless areas over the ocean and land surfaces. Here I have

continued that work, and investigate the potential for aerosol property retrieval in more

complicated scenes, such as aerosols lofted above clouds or extremely large aerosol loads

near forest fires. As part of this, I constructed an automated aerosol and cloud retrieval

technique that combines a first-principles based atmospheric radiative transfer model with

the Levenberg-Marquardt nonlinear optimization approach. This method retrieves optical

parameters and quantifies their uncertainties, which provide an assessment of optimization

success. The software is very flexible, and was also used to determine the sensitivity of the

RSP measurements to various parameters that determine atmospheric radiative transfer.

The retrieval software is applied to investigate two scenarios. The first analysis is of

data collected near an extremely optically thick and weakly absorbing forest fire smoke

(aerosol) plume in northern Canada. This well characterized plume is used to test the

importance of assumptions about aerosol vertical distribution during retrieval. It also allows

for an evaluation of simple approaches to merging aerosol vertical profile data from remote

sensing instruments. A second study is performed for aerosols suspended above clouds,

evaluating the theoretical feasibility of these observations, and then applying the method to

data from a particular field campaign. This scene involved aerosols originating in central

Mexico suspended over low altitude marine stratocumulus clouds in the Gulf of Mexico.

These studies will guide both operational APS algorithms and the design of future aerosol

remote sensing instruments.

An additional component of this thesis is an examination of the capability of RSP

and APS instruments to estimate the surface bidirectional reflectance distribution function

(BRDF) across the solar spectrum, and therefore constrain the surface radiation balance.

The retrieved BRDF can also be used to validate similar products from other instruments

that will have higher spatial resolution and global coverage than APS, but poorer angular

sampling, such as the NASA Moderate Resolution Imaging Spectroradiometer (MODIS)



instrument. The BRDF and broadband albedo are estimated using RSP data collected in

central Oklahoma, and a good agreement is found with both direct surface measurements

and MODIS remote sensing observations.
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Chapter 1

Introduction

Anthropogenic changes to the global climate system can be described in terms of radiative

forcing (RF), which is the energy balance of incoming and outgoing radiation. Aerosols

are particulate matter in the atmosphere that have a highly uncertain RF, especially when

compared to that of greenhouse gases. The Fourth Assessment Report of the Intergovern-

mental Panel on Climate Change (IPCC) finds anthropogenic aerosol RF to be between

-0.4 and -2.7 w/m2, with a ’low’ to ’medium-low’ level of scientific understanding. RF

is defined as a globally averaged flux change due to modification of a component of the

atmosphere. In contrast to aerosols, the RF for long-lived greenhouse gases (LLGHG) is

between 2.07 and 2.53 w/m2, with a ’high’ level of scientific understanding (IPCC [2007]).

There are several reasons for the low level of scientific understanding of aerosols. Aerosols

are heterogeneous, and have a wide range of physical and chemical compositions, optical

properties, sources and sinks. They interact radiatively with the climate directly (by scatter-

ing and/or absorbing radiation) and indirectly (by influencing atmospheric chemistry and

clouds, which scatter and absorb radiation). They tend to persist in the atmosphere for

much shorter periods than LLGHG’s, and so have strong regional, rather than global, in-

fluence. The sole exception are volcanic aerosols (due primarily to sulfur dioxide) that are

injected into the stratosphere, where they persist for years and therefore have significant

global climate effects (Hansen et al. [1998], Hansen et al. [2002], Hansen et al. [2005]).

To predict the climate, we require global models that can simulate the entire system to
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determine the effects of various anthropogenic forcings. Because of this global scale, or-

bital remote sensing instruments are needed to properly inform and verify climate models.

However, the current set of remote sensing instruments are unable to consistently mea-

sure all the necessary aerosol parameters (Mishchenko et al. [2007b]). For example, in

cloud free regions the Moderate Resolution Imager (MODIS) is capable of retrieving the

aerosol optical depth (which is a measure of the decrease in atmospheric transmission) and

a parameter related to particle size on a global basis (Remer et al. [2008]). While this is ex-

tremely useful, climate models also require the aerosol complex refractive index, bimodal

size distribution, chemical composition, and the capacity for cloud interaction, among other

parameters (Ghan and Schwartz [2007]). Much of the difficulty in determining all of these

parameters is due to the limited information content available in orbital measurements. Be-

cause of this, retrievals of aerosol optical properties often require assumptions about the

nature of those aerosols, and this explains some of the inconsistency that has been found in

different satellite data sets (Mishchenko et al. [2009]).

Recently, several instruments have been constructed that provide a greater information

content by utilizing polarization and multiple view angle observations, in addition to the

multispectral capabilities of previous instruments. One such instrument is the Aerosol Po-

larimetry Sensor (APS) on the upcoming NASA Glory mission [Mishchenko et al., 2007a].

APS has nine spectral channels, with the shortest center wavelength at 410nm and longest

at 2250nm. APS scans along the ground track, and observes a scene at about 250 viewing

angles (between 60◦ forward and the limb aft of nadir). Furthermore, APS will observe the

first three elements of the Stokes polarization vector, meaning it is sensitive to total and

linearly polarized radiance. Prior to the launch of Glory, the Research Scanning Polarime-

ter (RSP) has been used to validate the aerosol and cloud retrieval potential of APS. The

RSP is an airborne prototype of APS, and has very similar characteristics. Data collected

during field campaigns by the RSP have been used to verify the ability of RSP and APS

to retrieve aerosol optical properties over the ocean (Chowdhary et al. [2001], Chowdhary

et al. [2002], Chowdhary et al. [2005a]) and over land (Elias et al. [2004], Waquet et al.
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[2009a]) in the absence of clouds. These methods will be used to retrieve aerosol properties

operationally with the APS when it is in orbit.

Aerosol property retrieval in cloud free regions is performed by current instruments on

a global basis. The measurements made by the APS will dramatically increase the accuracy

and quantity of retrieved parameters in the absence of clouds. This thesis is an exploration

of the potential of RSP and APS observations to retrieve aerosol optical properties in other,

more complex, scenes. The research is presented as a collection of peer-reviewed, or soon

to be submitted, publications. Each publication describes the potential for additional types

of information that can be extracted from RSP and APS. Chapter 3 describes an investiga-

tion of the retrieval capability of RSP and APS when the aerosols are very optically thick,

absorbing, and vertically distributed in an inhomogeneous manner. This includes the use of

lidar data to constrain the retrieval process, and involves observations of boreal forest fire

smoke. Chapter 4 evaluates the potential for APS and RSP aerosol retrievals in the pres-

ence of clouds, specifically when aerosols are lofted over clouds. Aerosols above clouds

are a highly uncertain component of the evaluation of the total radiative effect of aerosols,

since aerosol forcing is dependent on the brightness of the underlying surface (Chung et al.

[2005]), and few instruments are capable of observing them (Chand et al. [2009]). This

chapter presents a method for simultaneous retrieval of aerosol and cloud optical proper-

ties with scanning polarimeters such as RSP and APS, and includes a sensitivity study and

accuracy assessment for the method. Finally, RSP and APS can also be used to observe

other geophysical parameters, such as surface reflectance. While the global coverage of

an along track scanning instrument such as APS is limited, the high angular resolution of

APS can be used to precisely determine the surface Bidirectional Reflectance Distribution

Function (BRDF). Combined with accurate aerosol property retrieval, this can be used to

validate global maps of surface reflectance. Chapter 5 is an example of this, where RSP

observations were used to successfully validate MODIS retrievals at a site in central Okla-

homa. This work also demonstrates that multi-view observations provide a good estimate

of the surface albedo variation as a function of sun angle.
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The remainder of this introduction presents the issue of aerosols in the global climate in

more detail, including aerosol sources and types (section 1.1.1), and the ways they interact

with climate (section 1.1.2). The present state of aerosol climate modeling is described

(section 1.1.3), as is the history of global aerosol observation from space (section 1.2.1).

The advantages of aerosol observation utilizing polarization are discussed next, followed

by a full description of the RSP and APS instruments (sections 1.2.2 and 1.2.3).

The field of remote sensing pulls together several disparate sub-disciplines of physics,

applied mathematics, engineering and environmental science. The research publications

that constitute chapters 3 through 5 are intended for a specific journal audience and do not

provide an adequate background and justification. Therefore, I have created an extensive

background chapter (2) in order to address this inadequacy and provide a broader discus-

sion of the current research state. Some of what is presented in the background may be

redundant with portions of the research publications, but I felt it was best to leave those

chapters intact as published. The background chapter includes an optical description of

aerosols and the Stokes parameter formalism we use to describe polarized radiance (sec-

tion 2.1). It then describes the methods I used to model atmospheric radiative transfer in

both a single and multiple scattering context. I then describe how surface total and po-

larized reflectance is modeled. Finally, I describe the optimal estimation methods that are

used to retrieve aerosol optical properties given observational data and a radiative transfer

model. This includes a brief description of the Levenberg-Marquardt nonlinear optimiza-

tion algorithm (LMA), the software that was created to implement this algorithm for RSP

data, and the various tools I use to characterize the error and assess the information content

in the system (section 2.6).
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1.1 Aerosols and Climate

1.1.1 Types of Aerosols

Aerosols have both natural and anthropogenic sources, and a variety of processes con-

trol their creation, evolution and eventual removal from the atmosphere. Often, multiple

types of aerosols are present at a location in the atmosphere at one time, each type with

its own source, size distribution, optical properties, and potential for interaction with other

aerosols, gases or clouds. As a result of such complexity, there is a rich literature describ-

ing the various aerosol types and their characteristics. Attempts have been made to identify

and catalog major classes of aerosol types to define a climatology as far back as 1979

(Shettle and Fenn [1979]). More recent efforts, such as the Optical Properties of Aerosols

and Clouds (OPAC) model generally identify about ten aerosol types (Hess et al. [1998]).

These models are of simplified versions of geophysical reality, reflecting the limitations of

observational capability and the quality and range of the data and literature that were used

to construct them.

For our purposes, two distinctions should be made when describing aerosols. Since

we are ultimately interested in anthropogenic modifications of climate, it is important to

determine if the aerosols exist because of human activities. In some cases, such as fossil

fuel combustion, the anthropogenic nature of aerosols is obvious, in others less so. For

example, wind blown desert dust would generally be considered natural, but if humans

have modified the surface hydrology by overgrazing livestock or diverting water runoff

it becomes less clear. The second important distinction has to do with the aerosol size.

Aerosols created by a mechanical processes, such as the aforementioned dust, tend to have

diameters greater than 1 µm and are typically present in small quantities. These large par-

ticles are called the ’coarse’ size mode. Aerosols created by chemical processes, such as

combustion, have smaller diameters (between 100nm and 1 µm), and are typically present

with much larger number concentrations. This aerosol mode is usually described as the

’fine’, or accumulation, size mode when discussing atmospheric radiative transfer. Both
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fine and coarse modes are usually present in a scene simultaneously, so aerosol retrievals

typically assume bimodal size distributions with independent optical properties for each

mode. Because of their size difference, fine and coarse mode aerosols tend to have dra-

matically different radiative properties, where coarse mode aerosols scatter radiation in a

similar manner at a variety of wavelengths, while fine mode aerosol scattering increases as

the observation wavelength decreases into the blue and ultra-violet. The only recent occa-

sion when this bimodal paradigm was not valid globally for an extended period was after

the eruption of Mount Pinatubo, when sulfuric acid aerosols in the stratosphere grew to a

third, intermediate, size mode between typical fine and coarse size modes (Russell et al.

[1993], McCormick et al. [1995]).

Several aerosol sources are briefly described below. These descriptions are not meant to

be comprehensive, but rather to introduce the diversity of aerosol types and the implications

that such diversity has for observations and modeling. A starting point for a more complete

review of aerosols and their effects can be found in section 2.4 of the IPCC 4th assessment

report (IPCC [2007]), or in observational classifications such as Dubovik et al. [2002].

1.1.1.1 Maritime aerosols

Maritime aerosols are comprised of sea salt that has been removed from the ocean by

breaking waves and bursting bubbles. These coarse mode aerosols are wind driven and

thus natural as long as one excludes wind changes due to anthropogenic climate change.

Since they are hygroscopic, maritime aerosols can act as cloud condensation nuclei. Mar-

itime aerosol sources are dispersed and significant sources are often located in very remote

locations (such as the Southern Ocean). For this reason it has been difficult to verify the

quantity of maritime aerosols that are observed by satellites with ground measurements.

Recent efforts (Smirnov et al. [2009]) are improving the situation. Other examples of these

types of aerosols can be found in Husar et al. [1997], Smirnov et al. [2002], Smirnov et al.

[2003], and Knobelspiesse et al. [2004].
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1.1.1.2 Mineral aerosols

Mineral aerosols are dust that has been lifted from areas of exposed soil, such as the Sa-

hara, Arabian, Taklamakan and Gobi Deserts buy wind gusts. Their optical properties vary

with the dominant minerals at the source. In some cases, dust aerosol loading can be quite

large, and dust can be transported over large distances, such as from the Saharan Desert

to South America (Prospero et al. [1981], Koren et al. [2006]) or from East Asia far into

the North Pacific and over the west coast of North America (Duce et al. [1980]). Since

they are created mechanically, dust aerosols usually have a size distribution that is pre-

dominantly in the coarse size mode. From a remote sensing standpoint, mineral aerosols

are difficult to observe correctly, since they are often non-spherical (Sugimoto and Lee

[2006]), meaning that radiative transfer methods that assume spherical particles will be in-

correct (Mishchenko et al. [1995]). Like maritime aerosols, the amount of dust aerosols

in the atmosphere is wind driven, and is also affected by land cover. Mineral aerosols can

be considered natural if one excludes anthropogenic changes due to wind and land cover.

Depending on the mineral source, dust can also be significantly absorbing, and the spec-

tral dependence of this absorption usually leads to stronger absorption at ultra-violet (UV)

compared to visible wavelengths (Bergstrom et al. [2007], McConnell et al. [2010]). Ex-

amples of dust aerosol optical property retrievals can be found in Smirnov et al. [1998],

Wang et al. [2003], and Waquet et al. [2005]. The difficulties of estimating dust aerosol

absorption mean that there continues to be substantial uncertainties in the effects of these

aerosols on the radiative energy balance.

1.1.1.3 Biomass burning aerosols

Biomass burning is a chemically complex process that produces carbon containing aerosols.

The two main components of biomass burning aerosols are particulate organic material,

usually referred to as Organic Carbon (OC), and soot, or Black Carbon (BC). While BC

is usually present in smaller amounts, it is very absorbing and potentially the source of a

significant positive RF (Jacobson [2001], Hansen and Nazarenko [2004]). However, ra-
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tios of OC and BC, along with other aspects of fire emissions, are extremely variable and

related to fire strength, fuel type and moisture content, local meteorological conditions,

and other factors. Furthermore, fires emit a variety of gas and particle phase Volatile Or-

ganic Compounds (VOCs) which through photochemical reactions and diffusion repeat-

edly condense into particles and evaporate into the gaseous phase (Donahue et al. [2009]).

Biomass burning aerosols therefore age as a function of sunlight availability, dispersion

rates, temperature, and other conditions (Abel et al. [2003], Grieshop et al. [2009]). To

further complicate matters, some OC preferentially absorbs at shorter wavelengths. This so

called ”Brown Carbon” (BrC) is not well characterized in terms of inherent optical proper-

ties, and is therefore difficult to confidently include in radiative transfer models (Andreae

and Gelencser [2006], Sun et al. [2007] and Lewis et al. [2008]). The relationship between

biomass burning aerosols and human activity is mixed, as forest fires can usually be consid-

ered natural (unless fire suppression efforts, or lack thereof, are taken into account), while

agricultural fires, such as those set prior to sugarcane harvest, are anthropogenic. Aerosols

generated by biomass burning are typically part of the fine size mode, and are small enough

to be considered spheres if they have had a chance to age slightly (and thus collapse from

carbon chains to a more compact form (Martins et al. [1998], Liu et al. [2008])). Because of

the complexity of biomass burning in the environment, and its widespread occurrence, there

is a rich literature describing these aerosols. Important review papers include Koppmann

et al. [2005], Reid et al. [2005a], and Reid et al. [2005b], while observational examples

can be found in Reid and Hobbs [1998], Remer et al. [1998], Wandinger et al. [2002],

Mayol-Bracero et al. [2002], O’Neill et al. [2002], Eck et al. [2003], Mühle et al. [2007],

and Yokelson et al. [2007].

1.1.1.4 Urban-industrial aerosols

Anthropogenic aerosols, produced by transportation, electricity generation, industrial emis-

sions and other sources are primarily chemically produced and therefore part of the fine size

mode. Generally, these aerosols are secondary, meaning that their precursors are emitted
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as gases that react in the atmosphere and condense to particulate form. Often OC, BC

and VOC’s are part of the urban-industrial mix when fossil fuels are burned, as are sulfate

aerosols. The latter is created by gaseous emissions of sulfur dioxide, which photo-oxidizes

to form aerosols. Nitrate aerosols are also formed by reactions in the atmosphere, where

the main precursors are ammonia and nitric acid (Bauer et al. [2007]). The presence of

emissions controls and the varied efficiency of industrial combustion has a large effect on

the relative contributions of different aerosol components and sources. Therefore, the pre-

diction and modeling of these aerosol sources based upon inventories alone is challenging.

To further complicate matters, reactions that create aerosols from gaseous precursors can

also involve biogenic precursors, and are therefore dependent on both anthropogenic and

natural sources. Examples of urban aerosol properties are found in a number of publica-

tions, including Remer et al. [1997], Wandinger et al. [2002], Chu et al. [2003], Mallet

et al. [2003], Aiken et al. [2009] and Crounse et al. [2009].

1.1.1.5 Biogenic and dimethylsulphide aerosols

Other than the aerosols listed above, there are several types of natural aerosols that are the

result of emissions of various plant or algal gaseous aerosol precursors. Oceanic algae emit

dimethylsulphide (DMS), which condenses in the atmosphere to form a sulfate aerosol.

Aerosols created by this process may seed clouds, particularly in remote regions of the

ocean, and therefore modify the amount of shortwave solar radiation reaching the surface,

which is a potential climate feedback that was first recognized more than twenty years ago

(Charlson et al. [1987]). In addition, land based plants emit VOC’s, which contribute to

the formation and growth of Secondary Organic Aerosols (SOA) (Andreae and Crutzen

[1997], Helmig et al. [2006], and Hallquist et al. [2009]).

1.1.1.6 Volcanic aerosols

Volcanoes can be a source of ash and sulfur dioxide. The latter, as described above, cre-

ates sulfate or sulfuric acid aerosols, which grow into a larger size mode than the ’fine’
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component due to a lack of aerosol removal mechanisms in the stratosphere. Compared

to anthropogenic aerosols, volcanic aerosols have a limited regional impact (Mather et al.

[2003], Grutter et al. [2008], de Foy et al. [2009]). However, the climate impact can be

significant if the sulfur dioxide is injected high into the tropical stratosphere during a par-

ticularly strong volcanic eruption. These aerosols persist for years rather than weeks, due to

the weakness of removal mechanisms and large scale circulation factors in the stratosphere

(such as Brewer-Dobson circulation, which transfers tropically injected aerosols globally

(Salby [1996])). A notable example was the eruption of Mt. Pinatubo in the Philippine

island of Luzon in 1991. The quantity of sulfur dioxide that Pinatubo injected into the

stratosphere was significant, and reduced the global mean temperature at the surface for

several years (Hansen et al. [1992], Minnis et al. [1993], McCormick et al. [1995]).

1.1.2 Aerosol climate impacts

For a number of reasons, aerosols are a much more uncertain component of the global

climate than greenhouse gases. As described above, they have a variety of sources and op-

tical properties. Depending on size and local meteorology, most aerosols are suspended for

days to weeks in the troposphere. This contrasts with greenhouse gases, which persist for

decades or centuries, and therefore have a nearly uniform global distribution. The short life-

time of aerosols means that their impacts are highly regional, and tend to vary dramatically

in both space and time. This variability is the main reason the global sampling provided

by satellite observations is required. To further complicate matters, aerosols interact with

climate in many ways. Figure 1.1, from chapter 2 of IPCC [2007], is a diagram of some of

the most important aerosol climate effects. This section will briefly describe these effects,

and what aerosol properties are required to understand the magnitude of those effects. A

more detailed review of this topic can be found in Haywood and Boucher [2000], and in

the IPCC [2007] fourth assessment report.
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Figure 1.1: This figure, taken from chapter 2 of IPCC [2007], expresses the different ways
aerosols can interact with climate, and is a modification of what was originally presented
in Haywood and Boucher [2000]. Straight arrows indicate shortwave solar radiation, while
wavy arrows are long wave radiation. Aerosol particles are the filled black dots, cloud water
droplets are open circles, and black stars represent cloud ice. Dashed vertical grey lines are
precipitation. Acronyms used in the description are cloud droplet number concentration
(CDNC) and liquid water content (LWC).
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1.1.2.1 Direct effects

Aerosols reflect and absorb shortwave solar radiation and prevent it from reaching the sur-

face. Generally, this creates a negative radiative forcing, but it is dependent on aerosol

optical properties. Important aerosol properties are the optical depth, τ , which is a mea-

sure of the quantity of extinction due to aerosols in the atmospheric column, the single

scattering albedo, ", which is the fraction of extinguished light that is scattered, and the

scattering phase function, P , which describes the scattering directional dependence (these

parameters will be described in more detail below). Since aerosols are easiest to observe in

cloud free regions and this effect is rather simple, it is commonly simulated and understood

to a much greater degree than other aerosol climate effects, although differences remain

(Myhre [2009]).

Aerosol direct effects can create a positive radiative forcing if the aerosols are absorb-

ing (" < 1), but both the magnitude and sign of this forcing is also dependent on the

reflectance of the surface beneath the aerosols (Haywood and Shine [1995]). The potential

for positive radiative forcing from absorbing aerosols increases as the surface beneath the

aerosol brightens. For this reason, the direct radiative effects of absorbing aerosols above

clouds are particularly important. Unfortunately, the presence of clouds prevents aerosol

property retrieval by most passive sensors. Retrieval of aerosols above clouds is a topic

discussed later in this thesis (chapter 4), since the polarized observations of RSP and APS

have the potential to make these observations.

1.1.2.2 First indirect effect

Aerosols modify cloud formation by becoming cloud condensation nuclei. This occurs be-

cause less energy is required for condensation to form on an existing surface than it is to

spontaneously create a pure water droplet. Changes in the number of surfaces available

for condensation can alter the optical properties of a cloud. An increase in the number

of the available cloud condensation nuclei (CCN) acts to increase the total cloud droplet

surface area for a given quantity of water, and thus the cloud optical thickness. This ef-
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fect, also called the Twomey effect to honor the author of the original papers describing

it (Twomey [1974], Twomey [1977]), acts to increase the cloud albedo and reflect more

shortwave radiation. The result is a negative radiative forcing. Simulation of this effect

requires an understanding of the number, size and solubility of potential CCN, along with

the dynamical factors that control droplet formation, such as updraft strength and peak wa-

ter vapor super-saturation. Like all aerosol indirect effects, the first indirect effect is highly

nonlinear, and estimates of the radiative forcing magnitude associated with it vary depend-

ing on aerosol quantity, cloud type and model assumptions. Although there have been

observational studies of the first aerosol indirect effect (Feingold et al. [2003]), most of

the published work on aerosol indirect effects is based on models (Ackerman et al. [2000],

Menon et al. [2002]).

1.1.2.3 Second indirect effect

Increasing droplet number and decreasing the cloud droplet size also modifies other cloud

properties. Smaller particles are less likely to fall as precipitation, which in turn increases

cloud lifetime (Albrecht [1989]), liquid water content (LWC), and cloud top height (Pincus

and Baker [1994]). Each of these factors contribute to a negative radiative forcing, as longer

lived clouds increase the mean global albedo, clouds with a higher LWC are more reflective,

and physically thicker clouds absorb more emitted long wave radiation (Ramanathan et al.

[2001], Lohmann and Feichter [2005]). Since these changes are dependent on the same

modifications that create the first indirect effect, simulations require the same knowledge

of aerosol and cloud properties.

1.1.2.4 Indirect effects on ice clouds and contrails

There are two main ways aerosols impact the formation and properties of cold (ice) phase

clouds. Jet aircraft exhaust, which is warm and moist compared to surrounding cold and

dry upper troposphere air, condenses to form ice phase contrails. The existence of these

anthropogenically generated clouds does have a climate impact (Boucher [1999]), but the
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role of aerosols on their generation and optical properties is still uncertain (Lohmann and

Feichter [2005]). Anthropogenic aerosols such as soot can act as Ice Nuclei (IN) for the

formation of cirrus clouds, increasing cloud optical thickness, lifetime and vertical distribu-

tion. Anthropogenic RF due to this effect is very dependent on the background availability

of IN. Furthermore, the temperature at which these particles become IN depends on par-

ticle composition and size (Lohmann and Hoose [2009]). Observations of Mt. Pinatubo

aerosols show a rather minimal impact on cirrus clouds (Lohmann et al. [2003]), although

mechanisms exist for a strong influence in some scenarios (Lohmann and Feichter [2005]).

1.1.2.5 Semi-direct effect

Absorbing aerosols modify the atmospheric temperature profile, which can act to modify

the presence of clouds. As an example, Ackerman et al. [2000] simulated trade cumulus

clouds to show how they are cleared by the presence of absorbing aerosols such as would

be encountered over the northern Indian Ocean during the northeast monsoon. This cloud

clearing reduces the globally averaged albedo and would therefore be a positive RF. How-

ever, the impact of absorbing aerosols depends on their altitude and the local meteorological

conditions. Koch and Del Genio [2010] found that absorbing aerosols within a cloud layer

act to decrease the quantity of clouds, while aerosols underneath the cloud generally act to

enhance convection and increase cloud cover. Absorbing aerosols above clouds increase

the stability of the temperature profile, with varying effects for different cloud types. In

global simulations investigating the semi-direct effect, the net RF was negative.

1.1.3 Aerosol climate modeling

A primary goal of aerosol remote sensing is to assist in the improved treatment of aerosols

in global climate models through the imposition of robust constraints on aerosol loading,

type and size. Models are essential if we are to identify and predict anthropogenic modifi-

cations to climate (Penner et al. [1994]). However, inclusion of aerosols in existing climate

models is an evolving process, since most aerosol quantities and effects are prescribed from



15

offline simulations or parameterizations. Current climate models, in this context, are those

that were used for the 4th assessment report of the IPCC (IPCC [2007]). These include the

NASA Goddard Institute for Space Studies ModelE (Schmidt et al. [2006]), the National

Center for Atmospheric Research CAM3 (Collins et al. [2006]), and the NOAA Geophysi-

cal Fluid Dynamics Laboratory CM2.1 (Ginoux et al. [2006]). Ghan and Schwartz [2007],

in their review of current aerosol modeling capability, call these 4th generation models. 5th

generation models are those that will be used for the 5th assessment report of the IPCC,

and so on for subsequent generations.

In 4th generation climate models, only sulfate aerosol concentrations are created inter-

actively in the model, whereas maritime, OC, BC and mineral aerosols are prescribed from

offline simulations. Optical properties for each aerosol type are also prescribed. In 5th

generation models aerosols will be generated by wind speed and soil moisture for maritime

and mineral aerosols, and DMS aerosol precursors will depend on wind speed. Aerosol

activation in 4th generation models is prescribed for each aerosol type, whereas in 5th gen-

eration models activation is parameterized in terms of updraft velocity and aerosol type. In

both of these model generations, many aerosol evolution and removal processes are either

neglected or highly simplified (Ghan and Schwartz [2007]). It is clear that climate models

are only beginning to capture the geophysical complexity of aerosols.

Accurate observations of aerosols are required to properly quantify their direct and indi-

rect effects. Mishchenko et al. [2004] describe the accuracy requirements that are the guide-

lines for the APS instrument, which is intended to gather data that will provide effective

constraints on the components in aerosol models. As mentioned previously, modeling of

aerosol direct effects will require global measurements of the aerosol optical thickness, τ ,

the single scattering albedo, " and the scattering phase function, P for each aerosol mode.

These, in turn, require observations of aerosol size, complex refractive index and shape.

Quantification of the indirect effect requires information about both cloud and aerosol

properties. Necessary cloud properties are the cloud albedo, droplet size, droplet num-

ber concentration and liquid water path, while number concentration, size and solubility
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are required for aerosols.

1.2 Aerosol Observation

As mentioned previously, aerosols are currently included in climate models in a relatively

simplistic manner, although this is changing rapidly (Bauer et al. [2010]). A major is-

sue for the evaluation of aerosols in climate models is the limited accuracy and scope of

global measurements of all the aerosol properties required for climate modeling. Gener-

ally speaking, the primary observed aerosol parameter is the optical depth. Optical depth

has been observed from orbit for three decades by the Advanced Very High Resolution

Radiometer (AVHRR) series of instruments (Ignatov and Stowe [2002], Mishchenko et al.

[2007c]). However, even observations of this most basic parameter by the latest genera-

tion of instruments are sometimes inconsistent (Remer et al. [2006], Liu and Mishchenko

[2008], Mishchenko et al. [2009]), especially over land surfaces. Furthermore, optical

depth is only a measure of the total aerosol extinction, and does not differentiate between

aerosol types and optical properties to the degree required by climate models (Mishchenko

et al. [2007b]). Parameters that aid aerosol species differentiation, such as the Angström

exponent (which expresses the spectral variation in optical thickness and is related to par-

ticle size), are even more inconsistent. The primary reason for the absence of better size

and species products from current sensors is the need to estimate between ten and twenty

aerosol parameters in each scene. Since current sensors usually have ten or fewer measure-

ments for any given scene and these measurements are not independent, parameter estima-

tion is indeterminate and requires a significant number of assumptions. These assumptions

are not always transparent in the retrieval algorithm, or well justified by observation or

models.

In this section I will provide a brief outline of the history of orbital observations of

aerosol properties in order to provide insight into the design of next generation instruments

such as the APS. Polarization is a primary component of the APS observational strategy, so
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the basis of this approach will then be described. Finally, the details of the APS and RSP

instruments will be described and compared.

1.2.1 Orbital instrument history

Aerosol measurements from orbit began in the late 1970’s with the Advanced Very High

Resolution Radiometer (AVHRR) and Total Ozone Mapping Spectrometer (TOMS) instru-

ments, which use one or two nadir viewing channels to retrieve optical depth and Angström

exponent. The AVHRR algorithms can only be applied over dark surfaces, such as the

ocean (Husar et al. [1997], Mishchenko et al. [1999], Ignatov and Stowe [2002] and other

references described in table 2.2 in IPCC [2007]). Since AVHRR, aerosol observing in-

struments have improved by increasing the quantity of information measured in each scene

so that retrieval algorithms require fewer assumptions about aerosol properties. For ex-

ample, newer single view angle instruments, such as the Sea-Viewing Wide Field-of-View

Sensor (SeaWiFS, launched in 1997) and the Moderate Resolution Imaging Spectrometer

(MODIS, two instruments launched in 1999 and 2002) utilize higher spatial resolution,

better calibration and more spectral channels to retrieve more accurate optical depths and

Angström exponents (Tanré et al. [1997], Remer et al. [2005], Wang et al. [2005] and

other references described in table 2.2 in IPCC [2007]). Even more information is gathered

with the multiple view angle Multi-angle Imaging Spectro-Radiometer (MISR, launched

in 2000) which uses nine viewing angles and four spectral channels (Kahn et al. [2001],

Kahn et al. [2005]). POLDER (Polarization and Directionality of the Earth’s Reflectances)

was the first instrument to utilize both multiple view angles and linear polarization. The

first POLDER instrument was launched in 1996, but the spacecraft failed in 1997. Unfortu-

nately, a second launch in 2003 also failed within a year. Nevertheless, POLDER was able

to retrieve more detailed aerosol information than previous efforts, particularly over land

(Deuzé et al. [2000], Deuzé et al. [2001]). A third, and to date successful, satellite called

the Polarization and Anisotropy of Reflectance for Atmospheric Sciences coupled with

Observations from a Lidar (PARASOL), was launched in 2004 (Fougnie et al. [2007]).
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PARASOL carries a version of POLDER that is very similar to earlier instruments. Table

1.2.1 briefly lists the main characteristics of these instruments, along with the capabilities

of RSP and APS.

Table 1.1: This table contains characteristics of the primary aerosol observing orbital in-
struments currently in orbit and the RSP and APS. For more details, see the references cited
in section 1.2.1. Note that the ability to observe the I,Q, and U components of the Stokes
polarization vector (see section 2.1) means that total and linearly polarized reflectances are
detectable. POLDER does so with limited accuracy, while RSP and APS have a polariza-
tion accuracy of 0.2%.

Instrument Visible Bands Infrared Bands View angles Polarization
AVHRR 0.6-0.9µm 3.7µm 1 no
MODIS 0.47-0.86µm 1.24, 1.64, 2.12 µm 1 no
MISR 0.44-0.86µm none 9 no

POLDER 0.44-0.86µm none 14 I,Q,U
RSP 0.41-0.865µm 0.96, 1.59, 1.88, 2.25µm 150 I,Q,U
APS 0.41-0.865µm 0.91, 1.37, 1.59, 2.25µm 255 I,Q,U

UV observations have a very different aerosol sensitivity compared to measurements in

the visible and NIR. Furthermore, surface reflectance is both low and stable in this spectral

range. At these wavelengths, aerosol optical depth, vertical distribution and absorption

significantly modify the Rayleigh (molecular) scattering contribution, and this modification

is highly dependent upon the quantity of aerosol absorption. The low surface reflectance

and strong sensitivity to aerosol absorption has been used to develop algorithms for TOMS

and several other other similar instruments (Torres et al. [2007]). These algorithms have

some accuracy limitations in terms of absorption and optical depth, but do provide for a

tracking of the seasonality and variability of absorbing aerosols over the last three decades.

A more recent observing strategy has been to place several instruments in a similar

orbit. This allows near-simultaneous observations of the same location, and provides po-

tential for aerosol retrievals that are constrained by multiple sources of information (An-

derson et al. [2005]). The primary orbit of this type is the so-called ’A-Train’ low earth

polar orbit. Four satellites are currently part of A-Train, and they carry several instru-
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ments useful for studies of aerosols. This includes one of the MODIS instruments and the

Ozone Monitoring Instrument (OMI), which has similar characteristics to TOMS (Torres

et al. [2007]). PARASOL was a part of the A-Train orbit until the start of 2010, when it

depleted the fuel it used to maintain its position within the A-Train and was moved to a

safer orbit farther from other satellites. The A-Train also includes the Cloud-Aerosol Lidar

and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. CALIPSO carries the

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which is an active (Lidar)

sensor. CALIOP is able to retrieve a different set of aerosol parameters than the instruments

described previously, with a particular focus on vertical distribution of aerosols and clouds

(Winker et al. [2004], Winker et al. [2007]). The A-Train is also the destination for the

NASA Glory satellite and the APS it carries.

1.2.2 The advantages of polarization for aerosol remote sensing

Instruments that observe the polarized solar reflectance from orbit have several distinct

advantages over instruments that only measure total reflectance. Polarized observations

provide additional information that can be used to distinguish aerosol optical properties

(Mishchenko et al. [2002]). Polarization also makes it easier to differentiate the effects of

aerosols from other components of the radiative transfer system as observed at the top of

the atmosphere (Cairns et al. [2009]). Compared to radiance only observations, polarized

observations are more capable of distinguishing aerosols from reflecting surfaces under-

neath, such as the ocean, land or cloud layers. For this reason, polarized observations have

the potential to retrieve aerosol properties more accurately than observations with radiance

alone.

In the case of aerosol retrievals over the ocean, the observed polarized reflectance com-

ponent at the sensor has only a small contribution from water leaving radiance when com-

pared to total reflectance for blue and green wavelengths. Polarized observations can there-

fore be used to identify the aerosols above the water after a trivial correction is made for

polarized water leaving radiance (Chowdhary et al. [2002]).
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Aerosol retrievals over land must account for the contribution of the surface reflectance

to the observation at the top of the atmosphere. For single view angle observations of to-

tal reflectance (such as with AVHRR or MODIS) this reflectance cannot be determined

by instantaneous observations alone and must be assumed. This of course significantly

degrades the capability of such retrievals and is the reason instruments such as MODIS

do not attempt retrievals over bright land surfaces (such as deserts). This problem can be

alleviated by the use of multi-temporal observations, which can separate the surface and

atmospheric contributions to observed radiance to some degree (Hsu et al. [2006]). Instru-

ments that observe with multiple view angles, such as MISR, are capable of simultaneously

retrieving aerosol and surface properties over bright surfaces, albeit with larger uncertain-

ties than over dark surfaces (Martonchik et al. [2002]). However, simulations show that

these retrievals are underdetermined, and the uncertainty in the retrieved aerosol properties

is too large for the requirements of climate models (Hasekamp and Landgraf [2007]). The

same simulations show that multi-angle polarized observations do have enough informa-

tion to accurately retrieve aerosol and surface properties. This is mainly because surface

polarized reflectance, unlike total reflectance, tends to be spectrally grey. Thus multiple

wavelength observations can distinguish between spectrally invariant surface effects and

spectrally variable aerosols. This strategy has been used by POLDER (Leroy et al. [1997],

Nadal and Breon [1999], Deuzé et al. [2001] and Herman et al. [1997]). RSP and APS

take this method a step further. Observations from these instruments have channels in the

near infrared (the longest at 2.25µm), where aerosol scattering is minimal and measure-

ments can be considered to provide direct observations of the surface reflectance properties.

Since the polarized component of that surface is nearly spectrally invariant (the minimal

polarized reflectance at solar backscattering angles direction does vary with wavelength),

these observations can be used to constrain surface polarized reflectance at shorter wave-

lengths that are used to retrieve aerosol optical properties (Cairns et al. [1997b], Elias et al.

[2004], Cairns [2003], Cairns et al. [2009], Waquet et al. [2009b], Waquet et al. [2009a],

and Litvinov et al. [2010]).
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Another important feature of observations of polarized reflectance is that they only

represent interactions with the first few optical depths within a medium. For this reason,

measurements of polarized reflectance above a cloud are insensitive to cloud optical depth

for all but the thinnest of clouds (Breon and Goloub [1998]). This reduction of parameters

affecting a scene means aerosols suspended above (warm phase) clouds can be retrieved,

provided the polarized observations are of sufficient angular resolution and range to both

observe the cloud bow (whose shape is determined by cloud droplet size) and the side

scattering angles (determined largely by aerosols) (Goloub et al. [2000]). Attempts have

been made to retrieve aerosol optical properties above clouds with POLDER (Waquet et al.

[2009c]), but those efforts were limited by the coarse angular sampling of that instrument.

RSP and APS, however, have a much higher angular resolution, and are capable of retriev-

ing aerosol and cloud parameters simultaneously. A test of this technique for a scene with

RSP data is the topic of chapter 4 in this thesis.

1.2.3 RSP and APS

The Aerosol Polarimetery Sensor (APS) on the NASA Glory mission is the next step in

the technological progression of aerosol remote sensing instruments. Glory has a launch

date in the spring of 2011. Like POLDER, APS has multiple view angles and the ability to

measure the first three elements of the Stokes polarization vector. However, APS has many

more view angles than the POLDER instrument, several channels in the near infrared, and

a high (0.2%) degree of polarization accuracy.

The research in this thesis was performed using data from the airborne prototype of

the APS, the Research Scanning Polarimeter. The RSP, which is mounted in a downward

looking position in small aircraft, was deployed in a variety of field campaigns intended to

test the measurement capability of instruments like the APS. Chapter 3 is based on data that

were collected during the Arctic Research of the Composition of the Troposphere from Air-

craft and Satellites (ARCTAS) field campaign. During ARCTAS, the RSP was mounted on

the NASA B-200 aircraft, which was based in Yellowknife, Northwest Territories, Canada,
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during June and July of 2008. Chapter 4 used data from the Megacity Initiative: Local and

Global Research Observations (MILAGRO) field campaign, based in Veracruz, Mexico

during the spring of 2006. Finally, chapter 5 uses data collected during the Aerosol Lidar

Validation Experiment (ALIVE), based in Ponca City, Oklahoma, USA in September of

2005. The RSP was installed on the Sky Research Inc. J-31 aircraft during the latter two

field campaigns.

A brief outline of the main characteristics of APS and the RSP follows. See Mishchenko

et al. [2007a] for more details on the APS instrument.

• Spectral bands: The APS has nine narrow spectral window optical channels, with
center wavelengths of 410, 443, 555, 670, 865, 910, 1370, 1620 and 2250nm. Center
wavelengths for RSP are nearly the same, at 410, 470, 555, 670, 865, 960, 1590,
1880 and 2250nm. Italicized values indicate RSP differences from APS.

• Observation method: Telescopes scan in the direction of instrument motion to view
the atmosphere from a range of angles (about +60◦ to −60◦ from the nadir direc-
tion). Neither RSP nor APS are imaging instruments, as each scan is a single pixel
wide. Wollaston prisms are used to split the incoming radiation in each telescope
into orthogonal components. Since each component is observed simultaneously us-
ing identical optics, the polarized reflectances they represent are easily calibrated and
very accurate.

• Polarization: Both instruments measure the first three components of the four ele-
ment Stokes polarization vector (see section 2.1 for more details about the Stokes
polarization vector). This means the total reflectance and the magnitude and direc-
tion of linearly polarized reflectance are observed. The fourth element of the Stokes
vector, which is unobserved, represents circular polarization and is not expected to
be significant for observations of reflected sunlight (Kawata [1978]).

• Accuracy and calibration: Both RSP and APS have a high (0.2%) absolute accuracy
for the polarized reflectance, as the primary calibration for this measurement is the
relative gain of the detectors observing orthogonal polarization and is performed with
each scan. As mentioned above, this accuracy is possible because observations of the
polarized components are simultaneous.

• Angular resolution: APS has a rotation rate of 40.7 revolutions per minute and an
8mrad instantaneous field of view (IFOV). About 250 un-vignetted observations are
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performed for each scene. RSP has a rotation rate of 71.3 revolutions per minute and
an 14mrad IFOV, and makes about 140 samples per scene.

• Position: The APS will be launched into the A-Train polar orbit. The A-Train orbit
is ascending and has a nominal altitude of 705km above the surface, and APS will
cross the equator at 13:34 local time. Since it is mounted on an aircraft, the RSP has
a variety of potential observation altitudes and geometries. Cruising altitude for the
B-200 is 8km above the ground, while the J-31 used many different flight plans and
operated at a range of altitudes. Data collected during ALIVE for chapter 5 were as
low as 200m above the ground.

• Spatial resolution: The APS instantaneous field of view (IFOV) is 5.6km at nadir and
8.0km at a view zenith angle of 45◦. At the B-200 cruising altitude, the RSP has an
IFOV of 112m at nadir and 158m at 45◦. Low altitude (200m) flights during ALIVE
had an IFOV of 2.8m at nadir and 4.0m at 45◦.

Aerosol parameters are retrieved by matching an atmospheric model to measurements

collected by the instrument. For a given scene there are hundreds of pieces of information,

each representing different viewing angles, wavelengths, and Stokes vector components.

While many of these observations are highly correlated, they contain a wealth of infor-

mation that can be used to determine the dozen or so aerosol, cloud and surface specific

parameters. The construction of the atmospheric model and its use with a nonlinear opti-

mization technique to find these parameters is the topic of the next chapter.
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Chapter 2

Background

Polarimetric remote sensing requires an understanding of atmospheric radiative transfer,

instrumental observation techniques, and mathematical and computational concepts that

link them. The goal of this section is to establish the terminology associated with these

concepts and provide a brief background for material that is presented in subsequent chap-

ters. Clearly, these topics are quite extensive and are covered in much more detail in the

referenced literature, and material such as the review paper by Hansen and Travis [1974],

optics and atmospheric radiation textbooks such as Born and Wolf [1980], Liou [2002],

Mishchenko et al. [2002], and Mishchenko et al. [2006], and numerical methods texts such

as Moré [1977], Moré et al. [1980], Rodgers [2000] and Markwardt [2009]. A thesis of

similar scope and material was presented by Chowdhary [1999], who studied the use of

polarization for remote sensing of atmosphere-ocean systems.

The structure of this chapter mimics the order in which the concepts are encountered in

remote sensing. First, I will explain polarization and how electromagnetic (EM) radiation

can be represented with the Stokes polarization vector, and how we formulate expressions

of the vector that are convenient for our observational techniques. Next, single scattering

by molecules and aerosols will be described by the concepts of Rayleigh scattering and

Lorenz-Mie theory. Polarized surface reflectance will be covered next, followed by the

methods that we use to compute observed radiances of a multiple layered atmosphere and

surface system. Next, the nonlinear optimal estimation method, which connects instrument
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observations to radiative transfer theory, will be addressed. Finally, the software we use to

implement these methods, and the techniques we use to assess the success of our estimation

will be covered.

2.1 Polarization

We can describe a plane wave scattered in the direction of the unit vector ẑ = r̂× l̂, by the

pair of terms

El = alei(ωt−kz−εl)

Er = arei(ωt−kz−εr)
(2.1)

where a indicates the component EM amplitude and ε the phase. t is time, k is the

wavenumber (k = 2π
λ , where λ is wavelength), ω is the angular frequency (ω = 2π

T , where

T is the period), and i =
√
−1. If we define the plane of scattering to include the vectors

pointing in the illumination and scattering directions, El is the electric field paralleL and

Er is the electric field perpendiculaR to this plane.

Polarization of EM radiation is often described as a four element vector. One formula-

tion is the Stokes polarization vector,

I =< ElE∗
l + ErE∗

r >

Q =< ElE∗
l − ErE∗

r >

U =< ElE∗
r + ErE∗

l >

V = −i < ElE∗
r − ErE∗

l >

(2.2)

where the brackets indicate time averages and ∗ the complex conjugate. The Stokes vector

element I is the intensity, which is the rate of energy flow across a unit area perpendicular

to ẑ (with units of, for example, Wm−2 ). The direction and magnitude of linearly polarized

intensity are expressed with vector elements Q and U , while V is the circular polarization.

This formulation of polarization is commonly used because it provides a convenient rep-

resentation for numerical modeling of multiple scattering problems, and because it allows
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for a straightforward expression of easily obtained observations. If we consider the inten-

sity defined as a function of the retardance imposed on the perpendicular field with respect

to the parallel field, ε by a perfect retarder, and that would be transmitted by a perfect

polarizer oriented at an angle, Ψ = tan ar
al

, with respect to the parallel field direction (ie

I = I(Ψ, ε)), then it can be shown (Hansen and Travis [1974]) that

I = I(0◦, 0) + I(90◦, 0)

Q = I(0◦, 0)− I(90◦, 0)

U = I(45◦, 0)− I(135◦, 0)

V = I(45◦, π
2 )− I(135◦, π

2 )

(2.3)

Time averaged versions of the first three elements of the Stokes vector are therefore

easily obtainable with, for example, Wollaston prisms (as is the case for the RSP and APS)

or linear polarizers (as is the case for POLDER). Circular polarization, which is quantified

by V as the excess of right-handed polarization over left-handed polarization, is small

(< 0.2% of the linear polarization) in remote sensing of atmospheric aerosols illuminated

by sunlight (Kawata [1978], De Haan et al. [1987]) so it is neglected in the measurements

made by the RSP and APS and from studies that are presented here.

We restrict ourselves to quasi-monochromatic, incoherent radiation, for which I2 ≥

Q2 + U2 + V 2, and the linearly polarized intensity, Ip is

Ip =
√

Q2 + U2 (2.4)

The relationship between Q and U can be described by the polarization angle, χ, which is

the angle between the polarization direction and l̂:

χ =
1

2
tan−1 U

Q
(2.5)

Since more than one value of χ satisfies equation 2.5, the convention that is used (Hansen

and Travis [1974]) is to select the value in the interval 0 ≤ χ <π for which cos 2χ has the

same sign as Q.
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2.2 Observation units

From a remote sensing standpoint, it is often useful to express the polarization components

of the Stokes vector in terms of reflectance. This takes the exo-atmospheric irradiance

and solar geometry into account, so reflectances at different locations and times can be

compared. Reflectance is calculated using the formulae

RI =
Iπr2

o

Fo cos θs

RQ =
Qπr2

o

Fo cos θs

RU =
Uπr2

o

Fo cos θs

(2.6)

where Fo is the annual average exo-atmospheric irradiance (W/m2), ro is the solar distance

in astronomical units (AU, thus compensating for solar distance deviation from average

throughout the year), and θs is the solar zenith angle. As we shall see in the description

of Rayleigh and Lorenz-Mie scattering, RU = 0 for single scattering if the illumination

Stokes vector is {1, 0, 0, 0} (unpolarized) and r̂ and l̂ are defined with respect to the scat-

tering plane defined by ẑ and the illumination unit vector. Thus RI and RQ are all that is

required to describe the total and linearly polarized reflectance in a scene dominated by

single scattering. In this situation, the polarization angle, χ, is either 0◦ or 90◦.

From a practical standpoint, this provides a means to assess the uncertainties of obser-

vation geometry, which is an important issue for airborne measurements from the RSP. If

aircraft geometry is correct, the polarization angle will be 0◦ or 90◦ for observations where

single scattering dominates (such as side scattering viewing angles at long wavelengths).

If this is not the case, aircraft pitch, yaw or roll can be adjusted, within reasonable limits,

until a valid polarization angle is found. This is the method that was used to correct aircraft

geometry in chapter 4. An alternate technique is to minimize RU in the plane of scatter-

ing, which was used in chapter 3. The former technique is a more recent development and
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preferred over the latter, as it offers higher sensitivity.

An alternate formulation of scene polarization is to use the polarized reflectance. Po-

larized reflectance compresses the RQ and RU into a single value that is less sensitive to

aircraft geometry because it is independent of the frame of reference used to define Er and

El.

Rp =
√

R2
Q + R2

U (2.7)

Rp has often been used as the measurement that is optimized during aerosol property re-

trieval, such as in Waquet et al. [2009a]. However, since it is always greater than or equal

to zero, the polarized reflectance does not effectively define the polarization neutral points,

which can be useful when comparing models to observations. For this reason, RQ, de-

fined with respect to the scattering plane, is the primary observational data used to retrieve

aerosol optical properties with optimal estimation in this thesis. In some special cases, RI

is also used during retrieval, such as in chapter 3, but it plays a secondary role and has

higher uncertainty.

2.3 Atmospheric single scattering

Quantification of atmospheric scattering requires a means to account for all the elements

in the input and output Stokes vectors. In the far field, where the distance between the

scattering particle and the observation location, R, is much larger than wavelength, this is

done with the scattering matrix, P(ξ):

I(ξ) = ke"
dv

4πR2
P(ξ)Io (2.8)

where Io is the incident Stokes vector, I is the scattered Stokes vector, and ξ is the scatter-

ing angle between them. dv is the volume containing the scattering elements, Io and I are

specified in terms of intensity [Wm−2], and Stokes vectors are defined with respect to the
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plane containing both Io and I (the scattering plane). Equation 2.8 depends on three inher-

ent optical properties of the scattering particles. The extinction coefficient, ke, expresses

the quantity of extinction in the volume and is related to the extinction cross section, σe,

ke =
σe

dv
=

1

dv

∑

i

σe,i (2.9)

where σe has units of [m2] and represents the cross section particles blocking intensity in a

unit area. The summation is for all particles, i, in the volume dv. The fraction of extinction

that is absorbed or scattered is expressed with the single scattering albedo, ", which is the

ratio of absorption to extinction in the volume, and is defined in various forms as

" =
σs

σe
=

σe − ka

σe
=

ks

ke
=

ke − ka

ke
(2.10)

where ks and ka are the scattering and absorption coefficients, while σs and σa are the

scattering and absorption cross sections. For " = 1.0, the volume is purely scattering,

while it is purely absorbing for " = 0.0.

For randomly oriented particles, ks and " are invariant with scattering angle. All that

remains to define scattering in a unit volume is the phase matrix, P. The phase matrix

specifies the directionality of scattering, and is the transformation matrix from the incident

Stokes vector, Io to the scattered vector, I. The I element of the phase matrix is normalized

such that

∫

4π

P1,1(ξ)
dΩ

4π
= 1 (2.11)

where dΩ is the solid angle element. A useful parameter that expresses the angular depen-

dence of scattering is the asymmetry parameter, g

g =

∫

4π

cos ξP1,1(ξ)
dΩ

4π
(2.12)

where g = 1 means forward scattering is dominant, g = −1 means backscattering is dom-

inant, and g = 0 means scattering is evenly distributed between the forward and backward
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directions.

P(ξ) is a 4x4 element matrix. In certain conditions, it can be reduced to

P(ξ) =





a1(ξ) b1(ξ) 0 0

b1(ξ) a2(ξ) 0 0

0 0 a3(ξ) b2(ξ)

0 0 −b2(ξ) a4(ξ)




(2.13)

with six individual elements, rather than the full sixteen. This reduction holds under one of

the following conditions:

• a group of randomly oriented particles, each with a plane of symmetry (such as

spheres or spheroids),

• a group of randomly oriented particles with an equal number of mirror particles, or

• a group particles so small compared to the wavelength of radiation that Rayleigh

scattering can be used to determine the scattering matrix.

For our purposes, atmospheric scattering can be described by either Rayleigh or Lorenz-

Mie theory, both of which meet the conditions described above. Rayleigh theory is for

scattering by very small particles in an exact manner, while Lorenz-Mie theory can be

used to describe scattering from larger, spherical, particles. Of course, aerosols are not

always spherical (or small enough that they can be treated that way), so other methods

have been developed to determine or approximate scattering from nonspherical particles.

While the research in this thesis assumes spheres, further development will involve the use

of nonspherical particles, whose scattering can be computed with the T-matrix method for

spheroids (Mishchenko et al. [1996], Mishchenko and Travis [1998], Mishchenko et al.

[2000]).

2.3.1 Rayleigh Scattering

EM radiation, when incident on very small particles, induces a dipole oscillation that in

turn emits (or scatters) radiation. This form of scattering, called Rayleigh scattering after
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the work of John Strutt, the Third Baron Rayleigh, is relevant if the size of the particle is

far less than the wavelength of radiation. This relationship is conveniently expressed with

the size parameter, x,

x =
2πr

λ
(2.14)

where λ is the wavelength and r is some metric denoting size (such as radius for a sphere).

Size parameters within the range 0.002 < x < 0.2 indicate that Rayleigh scattering is the

dominant process, which is the case for air molecules at visible and near infra-red (NIR)

wavelengths (Petty [2006]).

The Rayleigh scattering coefficient, as described in Hansen and Travis [1974] and ear-

lier sources, is

ks =
8π3(m2 − 1)2

3λ4n

[
6 + 3δ

6− 7δ

]
(2.15)

where m is the refractive index, n is the number of molecules per unit volume, and δ ac-

counts for the slightly anisotropic nature of molecular scattering (meaning that the molecules

are not perfect dipoles and do not generate perfectly polarized light at a 90◦ scattering an-

gle). For air, δ ∼ 0.03 and m = 1.000277 at visible wavelengths. If the refractive index

is complex, absorption becomes the dominant component of extinction in Rayleigh scat-

tering. This is the case in the NIR wavelength RSP and APS bands, where absorption by

carbon dioxide becomes significant at 1.6µm and methane becomes significant at 2.2µm.

For other RSP bands, air is purely scattering (" = 1.0). The Rayleigh scattering coeffi-

cient is inversely proportional to the fourth power of wavelength, which for observations

by RSP and APS means that it is a much more important component of total scattering for

the channels in the blue than it is for channels in the red or NIR.

The induced dipole oscillation is perpendicular to the EM wave propagation (ẑ), so the

scattered radiation is highly directional. The relationship is, however, a simple function of

scattering angle and anisotropy, and the elements of the phase matrix in equation 2.13 are
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a1(ξ) = ∆r
3
4(1 + cos2 ξ) + (1−∆r)

a2(ξ) = ∆r
3
4(1 + cos2 ξ)

a3(ξ) = ∆r
3
2 cos ξ

a4(ξ) = ∆r∆′
r

3
2 cos ξ

b1(ξ) = −∆r
3
4 sin2 ξ

(2.16)

where all other components of the phase matrix are equal to zero. The parameters ∆r and

∆′
r depend on the anisotropy of the molecular scattering.

∆r = 1−δ
1+δ/2

∆′
r = 1−2δ

1−δ

(2.17)

At the wavelengths we encounter with the RSP and APS, the Rayleigh scattering optical

depth is proportional to the molecular concentration integrated over the path length. This

is possible because the scattering coefficient per unit mass is constant outside atmospheric

absorption bands. For an atmosphere in hydrostatic equilibrium, the Rayleigh scattering op-

tical depth between the top of the atmosphere and any level in the atmosphere can therefore

be accurately predicted by the pressure. For this reason, molecular and aerosol scattering

are easily differentiated in radiative transfer models, and aerosol optical properties are all

that need to be optimized during a retrieval.

2.3.2 Lorenz-Mie scattering

For larger particles, whose size parameter is in the range of 0.2 < x < 2000 (in our case

aerosols and cloud droplets), Rayleigh scattering theory is no longer accurate. At the turn

of the 20th century, Ludvig Lorenz and Gustav Mie independently developed a solution to

Maxwell’s equations in spherical polar coordinates. Derivation of the solution can be found

in many sources, such as Bohren and Huffman [1983] and Mishchenko et al. [2002], and

only the solution of this partial differential equation is briefly noted here. The salient point

of Lorenz-Mie theory for our efforts is that the scattering from spheres can be predicted
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given the number concentration of those spheres in a volume, along with their size and

complex refractive index.

The Lorenz-Mie scattering phase matrix, specified as components of equation 2.13, is

a1(ξ, x, m) = a2(ξ, x, m) = 1
2(S1S∗

1 + S2S∗
2)

a3(ξ, x, m) = a4(ξ, x, m) = 1
2(S1S∗

2 + S2S∗
1)

b1(ξ, x, m) = 1
2(S1S∗

1 − S2S∗
2)

b2(ξ, x, m) = i
2(S1S∗

2 − S2S∗
1)

(2.18)

where S1 and S2 are the scattering functions, which are given by the Lorenz-Mie solution

as complex infinite series that depend on scattering angle, size parameter and refractive

index. As above, ∗ indicates the complex conjugate. The scattering functions are given by

the summations

S1(ξ, x, m) =
∞∑

j=1

2j+1
j(j+1) [ajπj(cos ξ) + bjτj(cos ξ)]

S2(ξ, x, m) =
∞∑

j=1

2j+1
j(j+1) [bjπj(cos ξ) + ajτj(cos ξ)]

(2.19)

where aj and bj are functions of size and refractive index, while πj and τj are functions

only of the scattering angle. πj and τj are related to Legendre polynomials, and are

τj(cos ξ) = d
dξP

1
j (cos ξ)

πj(cos ξ) = 1
sin ξP

1
j (cos ξ)

(2.20)

where P 1
j is the jth order Legendre polynomial. Computation of the generally complex

scattering coefficients aj and bj is the most numerically intensive component of Lorenz-

Mie scattering. These scattering coefficients depend on particle size and refractive index,

and use spherical Bessel functions. More details about their computation can be found in

De Rooij and Van der Stap [1984], Liou [2002] and Mishchenko et al. [2002].

Lorenz-Mie scattering coefficients can also be used to determine the particle scatter-

ing and extinction coefficients. Both coefficients are infinite series dependent on size and

refractive index. The volume scattering coefficient is
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ks =
nλ2

2π

∞∑

j=1

(2j + 1)(aja
∗
j + bjb

∗
j) (2.21)

while the extinction coefficient is

ke =
nλ2

2π

∞∑

j=1

(2j + 1))(aj + bj) (2.22)

where n is the particle number concentration in the volume and ) indicates the real com-

ponent of a complex number. From equation 2.10, the single scattering albedo is then

" =

∞∑
j=1

(2j + 1)(aja∗j + bjb∗j)

∞∑
j=1

(2j + 1))(aj + bj)
(2.23)

In practice, determination of these quantities is limited by the number of series elements,

j, that can be calculated given computational resources. The number of j terms should

be slightly larger than the size parameter, x, (Petty [2006]). Computation of Lorenz-Mie

scattering therefore becomes more expensive as the size parameter increases, and subject

to roundoff error if many coefficients must be determined. For this reason, it becomes more

reasonable to use alternate scattering computation methods, such as geometric optics, for

size parameters greater than 2000. The largest sizes that we encounter in this work are at

most an order of magnitude less than this, so the alternative scattering theories will not be

described here.

For very small size parameters (less than 1), Lorenz-Mie scattering has characteristics

that approach Rayleigh scattering (e.g., g = 0). There are equal amounts of scattering in the

forward and backscattering directions, and minimal scattering in directions perpendicular

to ẑ. As size increases, scattering shifts to forward directions, and the asymmetry parame-

ter, g, increases. As the size parameter becomes as large as cloud droplets, scattering side

lobes develop, and are responsible for features such as cloud bows, coronas and glories.

The cloud bow is much more strongly expressed in polarized than in total radiance, and is

highly sensitive to the cloud droplet size distribution. As we will see in chapter 4, this can
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be used to differentiate scattering due to clouds from aerosols, which are generally much

smaller and do not create such strong scattering side lobes.

2.4 Surface reflectance

Both of the single scattering theories above are sufficient to describe EM interaction with

the gases, aerosols and cloud droplets that we expect to observe with the RSP. The next

step is to combine them in a way that adequately models the atmospheric vertical distri-

bution and accounts for multiple scattering interactions. Since the lower boundary of the

atmosphere, the surface, is reflecting, we must also find a way to model surface reflectance.

There is a rich literature of both polarized and total surface reflectance observations, from

which a variety of models have been created. Many of these models are ad hoc, and their re-

sults are not directly traced back to Maxwell’s equations. However, they are suitable for our

purposes, since the goal (at least for chapters 3 and 4) is not to retrieve surface properties

from our observations, but to understand surface reflectance accurately enough to retrieve

atmospheric properties above them. Indeed, in chapters 3 and 4, surface reflectance is ei-

ther a very small or completely negligible contributor to observed reflectance. Chapter 5

does not involve aerosol property retrieval at all, but is a validation of surface reflectance

observations from the MODIS instrument and an evaluation of how well the dependence

on solar zenith angle of the surface albedo can be predicted from multi-angle observations.

The MODIS surface reflectance is the result of fitting multiple observations to a surface

reflectance model. While this model is also ad hoc, it has been shown to be robust (Schaaf

et al. [2006]). To maintain consistency, we use the same model in our validation in chapter

5.

The bidirectional reflectance distribution function (BRDF) is the basic quantity that

expresses surface reflectance as a function of wavelength and illumination and observation

geometries. As described in chapter 5 and in Nicodemus et al. [1977], the BRDF is
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BRDF (θs, θv, φs, φv, λ) =
dL(θs, θv, φs, φv, λ)

dE(θs, φs, λ)
[sr−1] (2.24)

where θs is the solar zenith angle, θv is the observation view zenith angle, φs is the solar

azimuth angle, φv is the view azimuth angle, and λ is the observation wavelength, which

we denote as Λ when referring to a spectral bandpass of finite width. The upwelling ra-

diance, L (defined as the energy projected in a solid angle from a surface, with the units

of wm−2sr−1, where sr is a solid angle) and downwelling irradiance, E can be associated

with any of the elements of the Stokes polarization vector, as long as they do so for the

same components. When the upwelling radiance is polarized, equation 2.24 defines the

bidirectional polarized reflectance distribution function (BPRDF). The BRDF and BPRDF

are quantities that are impossible to measure directly, since L and E are defined in infinites-

imally narrow portions of the solid angle. It is also usually impractical to observe the scene

in all combinations of solar and view geometry. In practice, the BRDF and BPRDF are

estimated with observations of narrow, but finite portions of the solid angle, and typically

matched to a model of surface reflectance.

In chapter 5, we use BRDF models that are also used for MODIS observations (Schaaf

et al. [2002]). These models consist of three reflectance kernels, which have various ge-

ometric dependences. An observation is therefore parameterized by the selection of three

scaling parameters corresponding to each kernel,

BRDF (θs, θv, φ, λ) * fiso(Λ) + fvol(Λ)Kvol(θs, θv, φ) + fgeo(Λ)Kgeo(θs, θv, φ) (2.25)

where Kvol and Kgeo are the volumetric and geometric scattering kernels, respectively, and

fiso, fvol and fgeo, are the isotropic, volumetric and geometric kernel scaling parameters. φ

is the relative view-sun azimuth angle (φ = φv − φs). A more detailed description of these

kernels can be found in chapter 5.

As stated previously, polarized surface reflectance does not contribute significantly to

the observed reflectance in the research presented in this thesis. However, an important
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component of the RSP and APS instrument design is the ability to take advantage of spe-

cific polarized surface reflectance characteristics, which can be used to retrieve surface

reflectance independently of aerosol properties. Since this is a cornerstone of the RSP and

APS operational strategy for observations over land, characterization of surface polarized

reflectance is briefly described here.

Most current polarized surface models assume that the source of polarization from the

surface are specular reflections on the front facet alone. Polarization created deeper within

a surface is dependent upon the random orientation of the reflecting surfaces within a ma-

terial, and tends to cancel. The Fresnel polarized reflectance coefficient, which expresses

the quantity of radiation reflected from the front facet of a surface, is therefore used as the

basis for these models, along with modifications to account for macroscopic surface shape

effects such as shadowing. The Fresnel polarized reflection coefficient depends on the solar

and view geometry and the surface refractive index,

Fp(m, θv, φv, θs, φs) =
1

2

[(
mµR − µI

mµR + µI

)2

−
(

mµI − µR

mµI + µR

)2
]

(2.26)

where m is the surface refractive index, and µI and µr are defined to be

µI = cos π−ξ
2

µR =
√

1− (sin π−ξ
2 /m)2

(2.27)

and the scattering angle, ξ, is

ξ = 1
2 cos−1 (cos θs cos θv + sin θs sin θv cos(φv − φs)) . (2.28)

Some of the earliest observations of polarized surface reflectance were by Vanderbilt

et al. [1985]. They found that polarized reflectance is, for the most part, spectrally invariant.

Because of this and the angular dependence of the observed reflectance, they concluded

that polarized reflectance is dominated by the specular component, and not Lorenz-Mie or

Rayleigh type scattering. Based on these observations, they made one of the first empirical

polarized reflectance models (Vanderbilt and Grant [1985]).
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Surface reflectance models that are based upon the Fresnel reflectance coefficient have

several important features. The Fresnel reflectance coefficient is zero at solar backscat-

tering angles, and increases uniformly away from backscatter. The reflectance coefficient

is mainly dependent on the real component of the refractive index, and has a very weak

dependence upon the imaginary component of refractive index. The real component of

the refractive index for many surfaces is nearly spectrally invariant. For example, the real

refractive index for epicuticular wax, which coats the surfaces of nearly all types of vege-

tation, varies between 1.54 and 1.47 at visible and NIR wavelengths (Vanderbilt and Grant

[1985]).

Several surface polarized reflectance models were created in preparation for the POLDER

instrument, a predecessor to RSP and APS ( Rondeaux and Herman [1991], Breon et al.

[1995], Nadal and Breon [1999]). These models used the Fresnel reflectance coefficient,

along with additional terms that account for the effects of macroscopic surface features,

such as the orientation of surface facets for leaves, or the roughness of exposed soil. For

our RSP retrievals, polarized surface reflectance is characterized with a the kernel approach

similar to equation 2.25,

BPRDF (θs, θv, φ, λ) * fpol(Λ)Kpol(m, θs, θv, φ) (2.29)

where fpol is the polarized reflectance scaling parameter, and Kpol is a kernel based upon

the Fresnel reflectance coefficient and geometric terms intended to account for macroscopic

scale scattering effects (such as the canopy shape, leaf angle distribution, and so on). We

use either the ’vegetation’ or ’soil’ polarized reflectance models from Breon et al. [1995],

Kpol,v(m, θv, θs, φ) = Fp(4(cos θv + cos θs))−1

Kpol,s(m, θv, θs, φ) = Fp(4 cos θv cos θs)−1
(2.30)

where Kpol,v is the polarized reflectance kernel for vegetation, and Kpol,s is the kernel for

bare soil. In practice, RSP observations at 2250nm are used to determine the value of fpol.

At this wavelength, aerosol effects are negligible, so RSP observations have a ”window”
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to the surface with nearly no atmospheric influence. The polarized reflectance scaling

parameter is chosen for the kernel in equation 2.30 that best matches the observations. The

refractive index used in each kernel is 1.5, which is reasonable for most common surface

types.

Once fpol has been determined using observations at 2250nm, it is applied at shorter

wavelengths (where aerosol effects on the observations are greater) to constrain surface

polarized reflectance in the radiative transfer model. Since RSP (and APS) observe all

channels simultaneously, this allows for the optimization to retrieve aerosol parameters

without the need for assumptions about surface reflectance. This is a distinct advantage

of this type of sensor over earlier aerosol remote sensing instruments, which either do not

have polarization channels or do not have channels at long enough wavelengths to be used

for surface characterization (Cairns et al. [2009]).

2.5 Multiple Scattering

To fully simulate the atmosphere in a manner that can be compared to observations, sin-

gle scattering and surface reflectance models must be combined in a way that accounts

for multiple scattering. This is done with a plane-parallel model, which is vertically in-

homogeneous but composed of multiple homogeneous layers. At low altitudes, layers are

composed of both Rayleigh and Lorenz-Mie scattering, while at higher altitudes there is no

aerosol scattering and therefore no Lorenz-Mie scattering. Generally, high altitude scatter-

ing by thin cirrus should be included in the modeling when performing aerosol retrievals,

but for an aircraft at 4-8 km the cirrus clouds are generally above the observer and cannot

be observationally constrained. The analyses presented in this thesis therefore use iden-

tification of cirrus clouds by pilots, or other instrumentation to eliminate those observa-

tions for which there was cirrus cloud overhead. To account for multiple scattering within

the atmosphere, the ’Doubling and Adding’ approach is used [Lacis and Hansen, 1974].

The ’Doubling and Adding’ approach uses analytically derived single scattering for an ex-
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tremely optically thin atmospheric layer and ’doubles’ this by computing all the multiple

scattering between the two identical layers. The results are the optical properties for the

combined layer. This is repeated until a desired optical thickness has been reached, and

’Added’ to a similarly constructed layer with different original optical properties (de Haan

et al. [1987]). Figure 2.1 is a schematic describing this technique.

Reflectance, diffuse transmission or direct transmission from a pair of layers is com-

puted by a summation of all upwelling, diffuse downwelling or direct downwelling terms

in figure 2.1. Combined layer reflectance, for example, is

Rab = Ra +(XaRbXa +T∗
aRbXa +XaRbTa +T∗

aRbTa)(1+RbR∗
a +(RbR∗

a)
2 + · · · ) (2.31)

where each element is described in figure 2.1. Equation 2.31 contains a geometric series,

and can be rewritten as

Rab = Ra +
(Xa + T∗

a)(RbXa + RbTa)

(1− RbR∗
a)

(2.32)

Xab and Tab are computed in a similar manner. The model above is only for a single ray of

radiation, the full form of Doubling and Adding integrates over all input angles for for any

term that involves diffuse transmission. More details about this approach can be found in

de Haan et al. [1987] and Hansen and Travis [1974].

2.6 Optimal estimation

Aerosol parameters are retrieved by matching the radiative transfer model described above

to the RSP or APS observations. The set of aerosol parameters in the model that has the

best match to the observations are considered the retrieved parameters. Observation uncer-

tainties are taken into account, so the model match is for a range of parameter values, which

therefore have their own uncertainties. The magnitude of these uncertainties provides an

assessment of optimization success and parameter sensitivity.
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Figure 2.1: The Doubling and Adding technique is a summation of all possible multiple
scattering interactions. This is similar to figure 3 in Lacis and Hansen [1974]. In this
figure, layer a with an optical thickness of τa is added to layer b, which has an optical
thickness of τb. Each layer is associated with a particular reflectance, R, diffuse transmis-
sion T , and direct transmission X , which for small optical thicknesses come from single
scattering computations. Terms noted with a * indicate reflectance or diffuse transmission
from beneath the layer. For inhomogenous layers (such as those after an ’addition’), these
terms will be different than reflectance or transmission from above. The reflectance, dif-
fuse transmission and direct transmission for the combined layers is the summation of all
upwelling, diffuse downwelling, and direct downwelling terms above and below the layers
respectively. For brevity, the interactions of the first diffuse scattered term, Ta are omitted
in this figure.
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Chapters 3 and 4 use software created by the author to perform the optimization. This

software, called Doubling and Adding Optimization (DAO), couples GISS (Goddard Insti-

tute for Space Studies) radiative transfer software written by Brian Cairns, Andy Lacis and

Larry Travis with a publicly available implementation of the Levenberg-Marquardt opti-

mization algorithm written by Craig Markwardt (Markwardt [2009]). The GISS software

combines Rayleigh and Lorenz-Mie single scattering computations with the Doubling and

Adding technique to create simulated RSP observations, while the Levenberg-Marquardt

algorithm adjusts the model parameters until an optimal solution is found. DAO is in-

tended to be flexible, so that the retrieved parameter vector is easy to modify. This means

that various parameters can be either prescribed (and are thus part of the overall model) or

retrieved, which is useful if investigating alternative retrieval strategies. DAO can also be

used to create synthetic scenes, which are used to asses the inherent parameter sensitivity

in various conditions.

The radiative transfer model match to observations is found by minimizing a, generally

nonlinear, cost function. This cost function expresses the difference between observations

and model results, weighted by observational uncertainty. DAO uses a cost function, Φ,

that is,

Φ(x) =
1

2
‖F(x)‖2 =

1

2

∥∥∥∥
Y−G(x)

CT

∥∥∥∥
2

(2.33)

where Y is the measurement vector and G(x) is the modeled vector for aerosol parameters

x. The use of ‖.‖ indicates the Euclidean norm. CT is the measurement error covariance

matrix, which includes contributions from instrument calibration uncertainty, instrumental

and shot noise, and errors from scene heterogeneity and aircraft geometry.

The Levenberg-Marquardt technique, which modifies the state vector, x, to minimize

the cost function, Φ, is described in detail in section 3.2.3.1. For most cases, the observation

vector, Y, consists of RQ for up to six wavelength channels (three RSP channels are used for

other purposes) and up to 152 view angles with each scan. This means that Y can be about

900 elements long, although the high degree of correlation between adjacent observations
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means there are far less than that number of retrievable parameters. In some instances,

such as in chapter 3, observations of RI were be added to Y. This was possible because the

effects of total surface reflectance, which is generally unknown, could be ignored because

of the extremely optically thick aerosol layer in that scene. Furthermore, surface reflectance

at 410 and 470nm is almost independent of the surface type, except for unusual surfaces

such as salt flats (Kleipool et al. [2008]).

The state vector, x, contains model parameters that are tuned during optimization.

These model parameters are required to either compute the single or multiple scattering

within the radiative transfer model. The parameters included in the state vector can be

easily modified in the DAO software, but generally include the following (for more infor-

mation, see Hansen and Travis [1974] and Petty [2006]). Optical properties are typically

defined for two size modes in each scene (see section 1.1.1). Cloud droplet size distribution

can also become part of the state vector if clouds are identified in a scene.

• Index of refraction, m: Index of refraction differentiates aerosol materials, and is

complex ( m = )(m) + i,(m)). Refractive index is utilized in the single scattering

component of the radiative transfer model. A non-zero imaginary component of the

index of refraction indicates the presence of absorption. In the implementation of

DAO used in this research, the real component of the refractive index is assumed to

be spectrally invariant, while in chapter 4 two parameters are used to describe the

spectral dependence of the imaginary component, which increases as wavelength de-

creases. Otherwise, the imaginary refractive index is also assumed to be spectrally

invariant.

• Effective radius, re and effective variance, ve: Although the scattering described

in section 2.3 is defined with respect to a single size, in the atmosphere aerosols

and cloud droplets exist with a variety of sizes. This size variability is usually well

represented with a small number of parameters as a mathematical distribution. For

example, DAO uses the log-normal size distribution for aerosols, and the gamma
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distribution for cloud droplet size, which are supported by observations of both of

those types of particles. Fortunately, is it relatively straightforward to account for

these size distributions in the single scattering models of 2.3 (Hansen and Travis

[1974]). Because of the variety of size distributions used in DAO, we chose uniform

parameters to describe size that are not unique to a specific distribution. One choice

could be the mean mode radius, but the effective radius, re is preferable in radiative

transfer in that it accounts for radius in terms of its cross sectional area and thus

attenuating effect. The effective variance, ve is a second parameter that describes the

variance about that mean, in terms of a normalized, unitless parameter:

re = 1
G

r2∫
r1

rπr2n(r)dr

ve = 1
Gr2

e

r2∫
r1

(r − re)2πr2n(r)dr
(2.34)

where the smallest particle radius is r1, the largest is r2, n(r) is the number of parti-

cles with radius r, and G is the geometric cross sectional area of the particles in the

volume. These parameters are easily transformed into the size distribution using the

equation

n(r) = r(1−3ve)/vee−r/(reve) (2.35)

for the gamma distribution, and

n(r) = 1
rσg(2π)1/2 e

−(ln r−ln rg)2

2σ2
g

rg = re/(1 + ve)5/2

σg = ln(1 + ve)

(2.36)

for the log-normal distribution.

• Aerosol optical depth, τa(λ) or number concentration, n: There is more than one

way to estimate the total opacity of aerosols present in a volume. An earlier version



45

of DAO, used in chapter 3, used the number concentration of aerosols as an ele-

ment of the retrieval vector. Later, DAO was modified so that the primary parameter

associated with aerosol opacity was the optical depth at a reference wavelength,

τa(λ, x1, x2) =

x2∫

x1

n(x)ke(λ)dx (2.37)

where x represents the position on a line between arbitrary points x1 and x2 (such

as the top and bottom of an aerosol layer). ke is the extinction coefficient due to

aerosols, which is calculated from equations 2.15 or 2.22 and is assumed constant

throughout the layer. The reference wavelength in DAO is 555nm. Optical depth is

related to direct beam transmission by the following relationship,

I(λ, x2) = I(λ, x1)e
− τa(λ,x1,x2)

µ (2.38)

where 1/µ = 1/ cos θ expresses the path length through the atmosphere caused by a

slant path at angle θ and x1 and x2 are depths in the atmosphere.

While they are technically similar measures of aerosol burden, there were several rea-

sons for the shift from the use of n to τa as a retrieval parameter. Sun photometers,

such as the AERONET network or the AATS airborne instrument, provide accurate

observations of optical depth, while the column integrated number concentration is

much more difficult to measure. Validation is therefore much easier if optical depth is

a parameter that is part of the state vector, with directly retrieved uncertainties. Fur-

thermore, optimization seems to be better behaved when optical depth, rather than

number concentration, is a part of the state vector. While this is a subjective observa-

tion that needs to be further validated, it makes sense in that the observed radiances

are directly dependent on the optical depth, which is the integral of the product of

number concentration and extinction cross section, rather than number concentration

alone.
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• Aerosol or cloud layer top and bottom heights, h. The vertical placement of the

aerosols or cloud droplets must also be specified within the radiative transfer model.

For simplicity, we use layers of uniform aerosol or cloud properties that have an

infinite horizontal extent (three dimensional effects are neglected).

Radiative transfer requires knowledge of all of the above parameters for each aerosol

or cloud droplet size mode. Cloud droplet refractive index is of course known (we use

the values from Segelstein [1981] weighted by RSP specral sensitivity convolved with the

solar spectrum from Lean [2000]), and cloud optical depth is assumed to be large enough

that variations have no impact on observed polarized reflectance (see chapter 4 for the

justification for this). Otherwise, all parameters must be derived from external information,

or assumption (thus formally becoming part of the radiative transfer model, G) or allowed

to vary during optimization as part of the state vector, x.

2.7 Error characterization and information content anal-

ysis

An important component of optimal estimation is the ability to assess the sensitivity to vari-

ous elements of the state vector, and determine the retrieval uncertainty. One of the primary

goals of this research is an investigation of what parameters can be retrieved in a particular

scene, and what strategies should be used for operational APS retrievals and the design of

future instruments. This requires an accurate determination of several components of the

optimization system. First, we need to understand the accuracy of our observation, which

we express as the measurement error covariance matrix, CT . The error covariance matrix

has the same length as the observation vector, Y, and expresses the individual error for each

vector element. The covariance matrix is described thoroughly in section 3.2.3.1. We must

also understand the inherent sensitivity of our forward model to perturbations in the state
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vector. This is expressed with the Jacobian matrix,

Jk =
∂F(x)

∂x

∣∣∣∣∣
x=xk

(2.39)

where xk is the state vector of the optimal estimate. As we shall see in section 3.2.3.1,

the Jacobian must be computed for each iteration step of the Levenberg-Marquardt opti-

mization algorithm, so the Jacobian from the final optimization step is the forward model

sensitivity at the solution. The Jacobian must also be estimated numerically by perturbing

the state vector by small quantities, which relies on the assumption that the forward model

is linear over a small domain.

The Jacobian can then be used to project the observation error, expressed as the error

covariance matrix, to parameter space. The retrieval error covariance matrix is

Cx = (JT CT J)−1 (2.40)

where the square root of the diagonal elements of Cx are the uncertainties of the associated

parameter.

One technique that is helpful when designing an optimization strategy is to compute

the Jacobian matrix for a simulated scene similar to what one expects to retrieve. If the ob-

servation error covariance matrix is known, then the associated parameter error covariance

matrix can be computed. Simulated uncertainties for each parameter indicate if it is possi-

ble to retrieve that parameter within remote sensing requirements. This is the approach that

was taken in chapter 4 for a scene with an aerosol suspended above a cloud.

Simulated retrieval uncertainty, however, does not indicate the correlation between dif-

ferent retrieval parameters. The correlation matrix is derived from the parameter error

covariance matrix,

ρi,j =
Cx,i,j√

Cx,i,i

√
Cx,j,j

. (2.41)

Essentially, the correlation matrix element, ρi,j , is the error covariance normalized by

parameter uncertainty. Strong positive correlation between elements indicates that their
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retrieval is linked, so that the differences between those parameters are well constrained,

while their sum is more poorly constrained than the diagonal elements of the covariance

matrix would indicate.

Because of the effects of correlation and noise, the actual retrieval capability of an

optimization system is more complex than the forward model sensitivity expressed by the

Jacobian. One metric for quantifying this capability is to use the Shannon information

content (Hs, see section 5.5 and Rodgers [2000]) defined in parameter space as

Hs =
1

2
ln

∣∣(JT C−1
T J + C−1

a

)
Ca

∣∣ (2.42)

where Ca is the a priori error covariance matrix, which expresses the uncertainty in parame-

ters prior to instrument observation and optimization. This is sometimes difficult to assess.

In some cases, we use aerosol climatologies as the initial value during optimization, so the

climatology uncertainty can be used to fill Ca. However, some properties, such as aerosol

optical depth, are not intrinsic to the aerosols themselves, and are highly variable. In any

case, the information content can be seen as a type of signal-to-noise ratio. If the a priori

error covariance matrix is kept constant, it can be a useful means to assess retrieval strategy.

In chapter 4, for example, we tested if it is better to retrieve aerosol properties above a cloud

when using a full RSP scan (which have high uncertainties in portions of the scan near the

cloud bow) versus a restricted retrieval utilizing only more accurate side scattering angles.

In this particular case, the full scan is a better approach, since simulated retrieval errors

were better for all parameters. If it is not so obvious, the information content, expressed as

a scalar, can be used to select the strategy that provides the greatest information increase.

Several assumptions must be made in the forward model so that optimization is ten-

able. For example, we assume that the atmosphere is made up of plane parallel aerosol

and cloud layers, that the surface reflectance can be modeled with the Fresnel polarized

reflectance coefficient, that aerosols and cloud droplets can be modeled with a log-normal

and gamma size distributions, and so forth. It is often difficult to assess how accurate these

assumptions are, but we can at least determine the impact that model errors have on re-
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trieved parameters. To do so, we modify one of the assumptions in the forward model by

our best estimate of its uncertainty, and recompute with the retrieved state vector, x. The

difference between this (which we will denote F̂ (x)) and the forward model results is the

model error in measurement space. We can then use the Jacobian to project the error (e)

into state space.

e = (JJT )−1J[F̂ (x)− F (x)] (2.43)

We use this tactic in chapter 4, where this concept is described in more detail.
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Chapter 3

Combined retrievals of boreal forest fire aerosol properties

with a Polarimeter and Lidar

Absorbing aerosols play an important, but uncertain, role in the global climate. Much

of this uncertainty is due to a lack of adequate aerosol measurements. The Aerosol Po-

larimetery Sensor (APS), which is on the NASA Glory satellite scheduled for launch in the

spring of 2011, is designed to help resolve this issue by making accurate, multi-spectral,

multi-angle polarized observations. Field observations with the Research Scanning Po-

larimeter (RSP, the APS airborne prototype), however, have established that simultaneous

retrievals of aerosol absorption and vertical distribution over bright land surfaces are quite

uncertain. We test a merger of RSP and High Spectral Resolution Lidar (HSRL) data with

observations of boreal forest fire smoke, collected during the Arctic Research of the Com-

position of the Troposphere from Aircraft and Satellites (ARCTAS). During ARCTAS, the

RSP and HSRL instruments were mounted on the same aircraft, and validation data were

provided by instruments on an aircraft flying a coordinated flight pattern. We found that

the lidar data did indeed improve aerosol retrievals using an optimal estimation method,

although not primarily because of the contraints imposed on the aerosol vertical distribu-

tion. The more useful piece of information from the HSRL was the total column aerosol

optical depth, which was used to select the initial value (optimization starting point) of the

aerosol number concentration. When climatological values of number concentration were
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used as an initial value we found that roughly half of the retrievals had unrealistic sizes

and imaginary indices even though the retrieved spectral optical depths were in all cases in

good agreement with independent measurements. The convergence to an unrealistic local

minimum by the optimal estimator is related to the relatively low sensitivity to particles

smaller than 0.1 µm at large optical thicknesses. Thus, optimization algorithms used for

operational APS retrievals of the fine mode size distribution, when the total optical depth

is large, will require initial values generated from table look-ups that exclude unrealistic

size/complex index mixtures. External constraints from lidar on initial values used in the

optimal estimation methods will also be valuable in reducing the likelihood of obtaining

spurious retrievals.

3.1 Introduction

Polarimetric remote sensing is a valuable tool for the study of atmospheric particles. In the

1970’s, Hansen and Hovenier used observations of (linear) polarization in sunlight reflected

from Venus to conclude that the planet is shrouded by sulfuric acid clouds (Hansen and

Hovenier [1974]). Today, the field has grown to include remote sensing of atmospheric

aerosol particles surrounding our own planet. Aerosols are airborne particulate matter that

are of interest because of the variety of ways they can affect the global climate, and because

this interaction is not well understood. Unlike the greenhouse gases associated with climate

change, aerosols typically survive in the atmosphere for only days or weeks, and are thus

highly regional. They have both natural and anthropogenic sources and highly variable

optical properties. For these reasons, the Intergovernmental Panel on Climate Change has

identified aerosols as a major source of uncertainty in the radiative forcing of climate (IPCC

[2007]). Much of this uncertainty is due to inadequacies in providing appropriate and

comprehensive information for climate models (Mishchenko et al. [2004], Mishchenko

et al. [2007b]).

The Aerosol Polarimetry Sensor (APS), onboard the upcoming NASA Glory orbital
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mission, is an attempt to expand the quantity and quality of atmospheric aerosol descrip-

tive parameters. APS will use polarimetric observations of reflected sunlight at about 240

viewing angles in nine channels at visible and near infra-red wavelengths (Mishchenko

et al. [2007a]). Aerosol property retrievals will be determined by optimizing a radiative

transfer simulation to match observed linear and polarized reflectance. In order to prepare

for the launch of APS, the Research Scanning Polarimeter (RSP) was constructed (Cairns

et al. [1997b]). The RSP is similar to the APS, but is deployed on an airborne, rather than

orbital, observation platform. The RSP has been used in a number of field campaigns in

the last decade to test the ability to accurately measure a variety of aerosol types (Cairns

et al. [1997a], Chowdhary et al. [2001], Chowdhary et al. [2002], Cairns [2003], Elias et al.

[2004], Chowdhary et al. [2005b], Chowdhary et al. [2005a], and Waquet et al. [2009a]).

In June and July of 2008, the RSP participated in the summer phase of the Arctic

Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS)

field campaign (Jacob et al. [2010]). ARCTAS was the NASA contribution to the inter-

national Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models,

of Climate, Chemistry, Aerosols, and Transport (POLARCAT) program of observations

for the International Polar Year. While stationed in Northern Canada, the RSP (and other

instruments associated with ARCTAS) observed smoke aerosols from boreal forest fires.

Biomass Burning (BB) aerosols tend to be both highly absorbing and unevenly distributed

vertically in the atmosphere. The effects of aerosol absorption and vertical distribution

were found to have similar impacts on the polarized reflectances observed over bright desert

surfaces which increases the uncertainty in the retrieval of both aspects of the aerosol distri-

bution (Waquet et al. [2009a]). Furthermore, retrievals of ocean optical properties may be

affected by incorrect aerosol retrievals due to aerosol vertical distribution errors (Duforêt

et al. [2007]). Fortunately, the Glory satellite will fly in the NASA/CNES ’A-Train’ orbit,

which includes a variety of earth observing instruments. One of these is the Cloud-Aerosol

Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and In-

frared Pathfinder Satellite Observation (CALIPSO) satellite (Winker et al. [2007], Winker
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et al. [2004], and Winker et al. [2003]). CALIOP can determine the vertical layering of

aerosols and reduce the ambiguity in APS BB aerosol retrievals due to aerosol vertical dis-

tribution uncertainty. During ARCTAS, the RSP flew onboard the NASA B-200 aircraft,

which also carried the High Spectral Resolution Lidar (HSRL) (Hair et al. [2001], Hair

et al. [2008], and Rogers et al. [2009]). In addition, the B-200 flew coordinated missions

with an aircraft containing instrumentation whose data can validate RSP results. ARCTAS

was therefore the ideal mission to evaluate combined polarimeter and lidar aerosol property

retrievals, and that is the main goal of this paper.

In the next section, we will provide an overview of the RSP retrieval approach. We

will also briefly describe the HSRL and in situ data collection and processing, and provide

references to more detailed discussions. Next, we will present the results of our tests.

RSP retrievals were performed with and without HSRL data, and were compared to in situ

data to test their success. Finally, implications of these tests for future RSP/HSRL and

APS/CALIPSO measurements will be discussed.

3.2 Method

3.2.1 RSP instrument specifics

The Research Scanning Polarimeter is an airborne prototype for the Aerosol Polarimetery

Sensor. The main goals of both RSP and APS are to retrieve a complete suite of aerosol and

cloud microphysical parameters from orbit (Mishchenko et al. [2004], Mishchenko et al.

[2007b]). Both instruments have similar characteristics, but since the data we analyze in

this paper were from RSP, that instrument alone will be discussed here. The RSP has nine

optical channels with center wavelengths of 410, 470, 555, 670, 865, 960, 1590, 1880 and

2250nm, and is a passive, along track, scanning (not imaging), device. Each RSP scan

begins about 60◦ forward of nadir in the direction of aircraft motion, and samples at 0.8◦

intervals to about 60◦ aft of nadir. The instantaneous field of view (IFOV) of the RSP is

fourteen milliradians. For an average (during ARCTAS) aircraft height of 8680m above sea
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level and ground elevation of 370m, this corresponds to ground pixel size of about 120m.

For observation of elevated smoke plumes such as ours, the spatial resolution is about 65m.

The RSP/APS observes linearly polarized and total reflectance. This can be described

by the first three terms of the Stokes polarization vector (Hansen and Travis [1974]), I ,

Q and U . I is the total radiance, while Q and U indicate the direction and magnitude of

the linearly polarized radiance. The fourth term in the polarization vector, V , represents

circular polarization, which is very small for atmospheric aerosols (Kawata [1978], for

spherical particles), and is neglected in the analysis of RSP data. From a remote sensing

standpoint, it is useful to express the polarization components of the Stokes vector in terms

of reflectance. This takes the exo-atmospheric radiance into account, and is calculated as

follows,

RI = Iπr2
o

Fo cos θs

RQ = Qπr2
o

Fo cos θs

RU = Uπr2
o

Fo cos θs

(3.1)

where Fo is the annual average solar exo-atmospheric irradiance (W/m2) spectrally weighted

for the particular RSP band, ro is the solar distance in AU (thus compensating for solar dis-

tance deviation from average throughout the year), and θs is the solar zenith angle. The

RSP instrument has a high accuracy (0.2%) of RQ and RU relative to RI , as the same

detectors are used to measure intensity and linear polarization, and because calibration of

their relative gain is performed with each scan.

For each scene, the RSP makes observations of RI , RQ and RU in nine wavelengths

for 150 view angles. This provides upwards of four thousand measurements that are used

to determine the aerosol optical properties that provide an optimal fit to the observations.

In practice, far fewer measurements are used (for reasons described below), and there is

also a strong correlation between observations at different view angles. However, this is

sufficient information to retrieve the half dozen or so optically important parameters for
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RSP data: 20 
samples while 

flying in 
coordination

with P-3 aircraft

MODIS Aqua 'truecolor'  image from 38 minutes prior to RSP data 
collection. Visualization provided by Google Earth ©

P-3 Aircraft Flight Track

Smoke Source

Figure 3.1: MODIS Aqua satellite fire imagery from 19:50 UTC. The RSP observations,
indicated by the ordered white polygons at the right, were collected at 20:28 UTC on the
B-200 aircraft. The flight track of the P-3 aircraft is shown in red. The portion of the P-
3 flight under the indicated RSP observations was coordinated to occur at the same time.
Google Earth was used to visualize these data.

each aerosol size mode. Furthermore, the broad spectral range of the RSP observations

allows the surface to be constrained almost independently of the atmospheric state.

3.2.2 ARCTAS and data selection

The ARCTAS field campaign involved three aircraft in two, three week segments in 2008.

The RSP was deployed during the summer (June - July) phase of the campaign (ARCTAS-

B) on a Beechcraft King Air B-200 aircraft based at the NASA Langley Research Center in

Hampton, Virginia. One of the primary goals of ARCTAS-B was to observe and character-

ize boreal forest fire smoke (Jacob et al. [2010]), so the B-200 was based in Yellowknife,

Northwest Territories, Canada (62N, 114W) for this purpose. The B-200 flew coordinated

flights with another ARCTAS aircraft during satellite overpass times. This aircraft, a Lock-

heed P-3 Orion from the NASA Wallops Flight Facility in Wallops, Virginia, carried a

variety of instrumentation, including the Hawaii Group for Environmental Aerosol Re-
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search (HiGEAR) aerosol in situ sampling instruments. Furthermore, the Ames Airborne

Tracking Sunphotometer (AATS-14), a fourteen channel sun tracking sun photometer, was

installed on the P-3. RSP data collected during these times is ideal for the validation of

RSP and APS aerosol retrievals of vertically inhomogeneous, highly absorbing aerosols.

We chose to study a small data subset from the smoke plume of a recent boreal forest fire.

Surveys of other boreal forest fire aerosols can be found elsewhere, for example Eck et al.

[2003], Koppmann et al. [2005], Reid et al. [2005b], Reid et al. [2005a] and Eck et al.

[2009].

A scene on June 30th, 2008, was selected for analysis. On that day, the B-200 overflew

a smoke plume downwind from its source in conditions that were otherwise nearly free of

aerosols. The fire was in northern Sasketchewan, Canada (58.41◦N, 106.81◦W) and had

been burning since the 29th of June. Natural Resources Canada, in its forest inventory of

2001 (CanFI2001), characterizes this region as a mixed soft and hardwood boreal forest.

RSP observations were made about 130 km downwind from the source (see Fig. (3.1)).

Back trajectory analysis (Fuelberg et al. [2010]) indicates that the smoke was 2 hours and

17 minutes old at this point, although it should be noted that this analysis did not account

for local dynamics associated with the fire. We consider this scene to be ideal for a number

of reasons, as described below.

1. The HSRL was operational at the time of RSP observation, indicating an optically

thick plume detached from the surface.

2. The B-200 aircraft (containing the RSP and HSRL) was in a coordinated flight path

with the P-3 aircraft (containing AATS and HiGEAR), which was under-flying the

B-200 at a mean altitude of 627m above sea level.

3. A MODIS-Aqua image was collected about forty minutes prior to the scene. The

”truecolor” version of this scene provides the spatial context as observed in Fig.

(3.1).

4. Aircraft orientation was close to the solar principal plane (the plane containing both
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the solar illumination and observation vectors), providing a large range of scattering

angles for use during optimization of RSP data.

5. The atmospheric state outside the plume was exceptionally free of aerosols. An RSP

aerosol retrieval performed prior to contact with the plume yielded an aerosol optical

thickness of 0.07 at 555nm, while AATS observations from the same location found

an optical thickness of 0.04 at 520nm.

6. Back trajectory analysis (Fuelberg et al. [2010]), combined with the Canadian Wild-

land Fire Information System database (Canada [2009]) shows that the airmass in the

days prior to the observation did not come into contact with any significant sources

of biomass burning (or other) aerosols.

Aerosol retrieval optimization was performed individually for about twenty segments

in each scene. Each segment is an average of five RSP scans. We used this approach

(rather than performing a single optimization on an average of a larger number of scans)

to test the consistency of the optimization approach, and to allow for the compensation,

or quantification, of the effects of scene heterogeneity and changing aircraft geometry.

In situ and sun photometer data on the P-3 indicate that aerosol optical thickness varies

across the smoke plume, while intensive properties such as single scattering albedo remain

mostly constant (see Figs. in Sect. (3.3)). We would therefore expect retrieved aerosol

number concentration, n, (and thus optical thickness, τ ), to vary across the plume, whereas

intensive properties (size and composition) should vary less. For the time, location, solar

geometry and other details associated with each segment, see Table 3.8.

3.2.3 Optimization Approach

We retrieved aerosol optical properties by matching the output from a radiative transfer

model to polarized and unpolarized reflectances observed by the RSP. The Levenberg-

Marquardt approach, which is a standard method for the solution of non-linear least squares
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minimization problems, was used to find that match. With the exception of some method-

ological and software differences (outlined below), we used the approach described in

detail in Waquet et al. [2009a]. Generally speaking, the radiative transfer model and

software is identical, using Lorenz-Mie computations of single scattering properties and

the Doubling and Adding approach to create multiple scattering in a layered atmosphere

(Mishchenko and Travis [2008], Hansen and Travis [1974]). Optimization is performed

differently than in Waquet et al. [2009a], with a slightly different cost function and mea-

surement vector and using publicly available software to perform the Levenberg-Marquardt

optimization. This software, implemented in the Interactive Data Language (IDL) as MP-

FIT (Markwardt [2009]), is a translation of the original FORTRAN language MINPACK-1

(Moré [1977]) solver, and is well documented. Since there are often subtle differences

between different implementations of the Levenberg-Marquardt approach, we describe our

methodology in more detail below.

3.2.3.1 Optimal Estimation

Optimal estimation is performed by the minimization of a, generally nonlinear, cost func-

tion. The cost function incorporates information about the uncertainty in the measurements

so that the estimate that minimizes the cost function is optimal in the sense that it provides

the best possible fit to the measurements given their uncertainties. In our case, this cost

function, Φ, is the sum of squares of differences between the observational data and model

calculation vectors weighted by their total uncertainty,

Φ(x) =
1

2
‖F(x)‖2 =

1

2

∥∥∥∥
Y−G(x)

CT

∥∥∥∥
2

(3.2)

where Y is the measurement vector and G(x) is the modeled vector for aerosol parameters

x. We use ‖.‖ to indicate the use of the Euclidean norm. CT is the measurement error

covariance matrix, which can be broken down into component errors as

CT = Cε + Ccal + Cpol + Cag + Cy + Cp (3.3)
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Following the example of Waquet et al. [2009a], the instrumental noise, Cε is shot noise

limited, Ccal is the absolute radiometric calibration uncertainty of 3%, and Cpol accounts

for the uncertainty in the relative polarimetric accuracy, which increases with the degree of

linear polarization.

Cε,i = 10−7 cos θsRI(i)

Ccal,i = (0.03RQ(i))2

Cpol,i = (0.001[RI(i) + |RQ(i)|])2

(3.4)

where the index, i, indicates that all the uncertainties are spectral band and view angle

dependent and it is assumed that the measurement error covariance matrix is diagonal.

Waquet et al. [2009a] uses a fourth term, CF , which accounts for errors modeling the

surface reflectance. The contribution of this term to the total error is very small, and since

the smoke plume we observe is quite optically thick, for this case we can (and do) ne-

glect CF . For the data we analyze here, we found two additional sources of uncertainty

that must be included in the error budget for the observations. The variability encountered

when averaging several scans of an inhomogeneous plume requires a new term, Cag, which

represents the sampling uncertainty for that observation. We have also added two terms

to account for uncertainties in the aircraft geometry. Cy is the uncertainty in the observed

polarized reflectance caused by uncertainties in the aircraft heading angle (yaw), which

expresses itself as an incorrect view azimuth angle. We estimated the magnitude of this

uncertainty by shifting the observed data for a heading error of 0.5◦, and taking the dif-

ference between the observed and shifted observation. For RQ, we add to Cy the error

from an incorrect rotation into the scattering plane. Cp is the uncertainty in the observed

polarized reflectance caused by aircraft pitch angle, which expresses itself as an incorrect

view zenith angle. Uncertainty is computed in a manner similar to Cy, and we again used

a value of 0.5◦. Typically, the largest contributer to measurement uncertainty is aircraft

pitch, closely followed by sampling uncertainty due to scene heterogeneity. Absolute cali-
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bration uncertainties are usually a much smaller contributer to the observation errors than

the uncertainties in aircraft geometry and scene variability.

The above covariance matrix definition applies to components of the measurement vec-

tor associated with the polarized reflectance. The covariance for the total reflectance is

slightly different. Polarimetric accuracy does not affect the uncertainty in the total re-

flectance, instrumental noise remains the same, and the radiometric calibration uncertainty

is now 3% of the total reflectance.

Ccal(i) = [0.03RI(i)]
2 (3.5)

The assumption of uncorrelated measurement errors is commonly used ( Lebsock et al.

[2007], Hasekamp [2010]) and is certainly valid for the instrument noise, and to a lesser

extent for polarimetric accuracy. For radiometric accuracy and aircraft attitude, there will

be correlation between measurement uncertainties at different view angles. For the data

analyzed here, however, scene heterogeneity and random variations in aircraft attitude

dominate the error budget and justify the assumption of uncorrelated measurements er-

rors. Future work will incorporate error correlation for aerosol retrievals over the ocean,

where surface heterogeneity does not reduce the effect of correlations between measure-

ment errors for different view angles.

Starting from selected initial values for the aerosol parameters, xo (see Sect. (3.2.3.3)),

the Levenberg-Marquardt algorithm provides an iterative search for the parameter vector,

p, that minimizes the cost function Φ(xo+p) and thus gives the optimal solution x = xo+p.

The iteration proceeds by constraining the minimization of the cost function at any step to

lie within a trust region, ∆k, around the current iteration step. A linearization about the

current state vector, xk, is used to determine the size of the next step. At any given step, we

are therefore attempting to solve

min{‖F(xk) + Jkpk‖ : ‖Dkpk‖ ≤ ∆k} (3.6)

where k is an index indicating how many steps have been made, and Jk is the Jacobian
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matrix, which expresses the forward model sensitivity to parameter change.

Jk =
∂F(x)

∂x

∣∣∣∣∣
x=xk

(3.7)

Dk is a diagonal, but not an identity matrix. This was introduced by Marquardt to allow

for a large step in a direction with low curvature and a small step in a direction with high

curvature. Heuristically, this serves to reduce the effects of a narrow valley with a relatively

flat floor and is calculated as part of the iteration with the formula

Dk = diag(d(k)
1 , · · · , d(k)

n )

d(k)
i = max

[
d(k−1)

i ,

∥∥∥∥
∂F(x)
∂xi

∣∣∣
x=xk

∥∥∥∥

] (3.8)

The Levenberg-Marquardt method is based on the theorem that if p∗ is a solution to equa-

tion 3.6, then p∗ = p(Υ) for some Υ ≥ 0 where

p(Υ) = −(JT
k Jk + ΥDT

k Dk)
−1JT

k F(xk) (3.9)

The constrained minimization is then implemented by the following algorithm, from Moré

[1977]

1. Given ∆k > 0, find Υk ≥ 0 such that if

(JT
k Jk + ΥkDT

k Dk)pk = −JT
k F(xk) (3.10)

then either Υk = 0 and ‖Dkpk‖ ≤ ∆k, or Υk > 0 and (1 − σ)∆k < ‖Dkpk‖ <

(1+σ)∆k. σ is the relative error within which the iterative estimate of Υk is required

to meet ‖Dkpk‖ = ∆k.

2. If ‖F(xk + pk)‖ < ‖F(xk)‖ then set xk+1 = xk + pk. Otherwise, shrink the trust

region (∆k+1 = 1
2∆k) and return to step 1, without modifying x and J.
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3. Choose ∆k+1. The ratio of the actual reduction of the cost function to the predicted

reduction is the criterion for adjusting ∆, viz.,

ρk =
‖F(xk)‖2 − ‖F(xk + pk)‖2

‖F(xk)‖2 − ‖F(xk) + Jkpk‖2
(3.11)

The value of ρk is used to determine ∆k+1 as follows

• if ρk ≤ 1/4, then set ∆k+1 < ∆k using the method in Fletcher [1971].

• if 1
4 ≤ ρk ≤ 3

4 and Υk = 0, set ∆k+1 = 2‖Dkpk‖

• if 1
4 ≤ ρk ≤ 3

4 and Υk > 0, set ∆k+1 = ∆k

• if ρk ≥ 3/4, then set ∆k+1 = 2‖Dkpk‖.

To summarize, if the predicted and actual reductions in cost functions are similar then

the trust region is increased, whereas if they are widely disparate the trust region is

decreased based on a prescription by Fletcher [1971].

4. Update Dk+1 using equation 3.8.

This iteration continues until either the step size is less than the expected uncertainty

in state (aerosol parameter) space, or the reduction in the cost function is small. Once the

iteration is complete, the retrieval error covariance matrix, Cx, can be obtained from the

Jacobians computed in the final step using the equation

Cx = (JT CT J)−1 (3.12)

Uncertainty associated with retrieved parameters is the square root of the diagonal elements

of Cx. The error covariance matrix can also be used to compute retrieval uncertainty of a

parameter that is not directly retrieved during optimization (such as the aerosol optical

thickness, see table 3.2), provided the dependent variables of the required parameter are

part of the retrieval vector x. This is done by computing the sensitivity of the indirectly

retrieved parameter in the forward model to changes in each of the retrieved parameters.



64

Following the method of Hasekamp and Landgraf [2007], the uncertainty in the indirectly

retrieved parameter (denoted with the subscript A) is

σ2
A =

N∑

i=1

N∑

j=1

Cx,i,j
∂Ga(x)

∂xi

∂Ga(x)

∂xj
(3.13)

where i and j are subscripts identifying elements of the retrieved parameter vector (which

has a length of N ). Ga(x) is the forward model value for the indirectly retrieved parameter,

A, evaluated at the optimal estimate, x (note that this is a scalar value not in the same space

as G(x) ). We compute the forward model sensitivity for an indirectly retrieved parameter

(∂Ga(x)
∂x ) numerically, with a post-processing step after optimization is finished.

We chose this form of the Levenberg-Marquardt method for several reasons, which we

briefly describe here. For more details about this method and its convergence properties,

see Moré [1977], or the documentation of the MINPACK FORTRAN subroutines on which

our technique is based (www.netlib.org/minpack/ and Moré et al. [1980]). The Levenberg-

Marquardt technique is robust, and is efficient in its use of forward model calculations. Our

vertically inhomogeneous vector radiative transfer model is computationally intensive, so

it is not feasible to make multiple forward calculations to determine an optimal parameter

Υk. The algorithm given above uses an iterative estimate of Υk, but the iteration is one

that finds a step within a trust region that does not require additional forward model or

Jacobian calculations (Hebden [1973]). For a trust region criterion of 10% (∆ =0 .1), Υ

is typically found within two iterations (Moré [1977]). The trust region grows whenever

the predicted and actual cost function reductions are similar, so the transition between the

steepest descent and Newton-Gauss components of the Levenberg-Marquardt technique is

heuristically reasonable, as whenever the next step is within the trust region an efficient

Newton-Gauss step is used.

3.2.3.2 The measurement vector

The measurement vector, Y, contains observations of the Q component of polarized re-

flectance (RQ) at six wavelength bands, and total reflectance (RI) for one band. In each
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band, observations were taken from a scan between 20◦ forward in the aircraft and 40◦

aft. Since the RSP has an angular resolution of 14 milliradians, this corresponds to 75

individual measurements in each scan, for a total of 450 observations of RQ and 75 obser-

vation of RI . The polarization frame of reference was rotated into the scattering plane (the

plane containing both the solar and observation vectors) so that RQ measurements alone

are sufficient to represent the linear polarization (RU is negligible for single scattering in

the scattering plane). For the purposes of optimization using data near solar backscatter,

the choice of RQ is preferable to the polarized reflectance (Rp =
√

R2
Q + R2

U ) that was

used in Waquet et al. [2009a]. RQ is a signed measure and makes more effective use of

observed neutral points than Rp.

The six wavelength bands used for RQ were centered at 410, 470, 555, 670, 865 and

1590nm. Three RSP bands were not used. Bands centered at 960 and 1880nm are designed

to allow the estimation of column water vapor and the identification and characterization of

cirrus clouds, respectively. The 2250nm band is used to characterize the total and polarized

surface reflectance for the radiative transfer model (see Sect. (3.2.3.3)). Our particular

scene contains optically thick smoke aerosols, so we also used one short wavelength RI

band (410nm) in the optimization. Observations at this band have almost no contribution

from surface reflectance, since surface reflectance is minimal in the blue (Guanter et al.

[2008]) and the large aerosol load obscures what is reflected. Nevertheless, we used the

methodology of Kaufman et al. [1997] to characterize RI at 410nm based on observations

at 2250nm, but should be insensitive to the uncertainty in this approach.

The measurement vectors were averages of five consecutive scans (a ’segment’ as de-

scribed above). Each scan is composed of data that have been reorganized so that all views

point to a specific location, at a specific altitude, in the atmosphere. This is essential to

reduce heterogeneity in the aerosol properties and loading within each segment. We per-

formed this data reorganization so that the segment contains the various observation view

angles of a 3800m altitude.
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3.2.3.3 The radiative transfer model

The radiative transfer model, G(x), is actually two nested models. The inner model com-

putes single scattering properties of bi-modal log-normal size distributions of aerosols us-

ing a Mie code for spheres (Hansen and Travis [1974]). The elements of the retrieval vector

required by the single scattering model are the complex refractive index, m, effective ra-

dius, re, and effective variance, ve, for each size mode. The smaller size mode, which we

denote hereafter with a f subscript, represents ’fine’ aerosols that are typically the product

of chemical processes, while the larger, ’coarse’ mode, denoted hereafter with a c subscript,

represents larger aerosols that are the result of a mechanical process. We expect the fine

mode to dominate in our scene, since smoke aerosols are chemically generated. We also

expect that Mie models of spheres are adequate expressions of our aerosols. Indeed, the

HSRL depolarization observations are very low, indicating spherical particle dominance

(see Sect. 3.2.4.1). Furthermore, it is believed that smoke aerosols that have aged for

an hour or more generally collapse into compact shapes that are well described, optically,

by spheres (Martins et al. [1998], Reid and Hobbs [1998], Abel et al. [2003], Liu et al.

[2008]). The doubling and adding (DA) technique is then used to compute the upwelling,

downwelling and reflected polarized radiance fields generated by multiple scattering in an

inhomogeneous atmosphere (Hansen and Travis [1974], De Haan et al. [1987]). The ad-

ditional retrieval vector elements required for DA calculation are the vertical distribution

of aerosol number concentration for each mode (nf and nc). The result is assembled into

a vector representing the geometry and wavelengths required to fill G(x), and used in the

optimization.

The radiative transfer model also requires that the ground reflectance is specified. For

polarized reflectance, we can utilize established assumptions about surface polarized re-

flectance. Polarized reflectance of natural surfaces (such as the epicuticular wax coating

the surfaces of leaves or the mineral facets of exposed rock) will be dominated by inter-

actions at the surface, as bulk scattering within the material tends to be weakly polarized.

Fresnel reflectance off surface facets is thus an appropriate basis for modeling the po-



67

larized surface reflectance (Vanderbilt et al. [1985], Grant [1987], Vanderbilt and Grant

[1991], Breon et al. [1995], Nadal and Breon [1999], Cairns [2003], Elias et al. [2004] and

Waquet et al. [2009a]). Since Fresnel polarized reflectance depends mainly on geometry

and the real component of the refractive index, it exhibits little spectral variance. This is

because most surface materials have a minimal real refractive index spectral variance (the

imaginary component of the refractive index does vary spectrally and gives total surface

reflectances color). We can therefore use the longest wavelength channel (2250nm), where

aerosol effects are smallest, to characterize the surface reflectance at all wavelengths. This

is used as the lower boundary condition in the DA radiative transfer model. In practice,

the Fresnel polarized reflectance model is scaled to an appropriate value to match observed

reflectances for each scene in order to account for surface roughness or variability in the

real refractive index. We use a single scaling coefficient for all geometries, which differs

from Waquet et al. [2009a], who used a value that varied with geometry. This simplifica-

tion is feasible for our analysis because of the relatively weak contribution of the polarized

surface reflectance due to optically thick aerosols, and allows the use a data closer to the

solar backscattering angle.

For unpolarized ground reflectance, observations at 2250nm were fit to the ”RossThick-

LiSparse” kernel based, bidirectional reflectance distribution function (BRDF) model. Fit-

ting to the BRDF model mimicked the NASA Moderate-Resolution Imaging Spectrora-

diometer (MODIS) surface reflectance retrieval methodology (Lucht et al. [2000b]) and

was performed previously with the RSP instrument in central Oklahoma in the United

States (Knobelspiesse et al. [2008]). The results were multiplied by 0.25 and used as the

reflectance at 410 nm. This is similar to the approximation of Kaufman et al. [1997] for

MODIS retrievals of aerosol properties over land. While it has been found that the 0.25

scaling is not appropriate for all surfaces and viewing angles (Gatebe et al. [2001] and Re-

mer et al. [2001]), the variation is small enough to be rendered irrelevant by the optically

thick aerosol layer obscuring the surface. For example, the retrieved aerosol optical thick-

ness at 410nm is 1.03 for the sample optimization in Fig. (3.2). This corresponds to a mere
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36% transmittance at nadir, not including the effect of molecular scattering. Reflectances at

2250nm were typically low, averaging about 5%. According to Kaufman et al. [1997], the

410nm reflectance would be one quarter of this, 1.25%. This surface reflectance transmit-

ted through the aerosol layer at nadir would only be about 0.5 in reflectance units, while the

total unpolarized reflectance is typically between 15% and 20%. Errors associated with the

approximation of 410nm reflectance would thus be suppressed in a similar manner. For this

reason, one short wavelength band was included in the optimization vector G(x). Longer

wavelength bands were not used because of the risk of sensitivity to inaccurate surface

reflectance characterization, both due to higher surface reflectance values in the red and

near-infrared, and lower surface-obscuring aerosol transmission.

Table 3.1 lists the model parameters, their units, and the a priori optimization values

(xo). A priori values were selected using the boreal forest fire smoke properties in Dubovik

et al. [2002], which were derived from systematic observations of sunphotometers in the

Aerosol Robotic Network (AERONET). Parameters listed in italics in Table 3.1 are re-

trieved during optimization, while the others are fixed.

It has been suggested that the imaginary refractive index of some types of biomass burn-

ing smoke have a spectral dependence, specifically an increase in absorption (imaginary

refractive index) in the blue and ultra-violet (Andreae and Gelencser [2006], Russell et al.

[2010], Bergstrom et al. [2010]). Unfortunately, direct observations of smoke complex re-

fractive indices are very limited. Absorption in smoke aerosols is typically associated with

Black Carbon (BC) which is spectrally flat. Organic Carbon (OC), which covers a wide

range of species with varying chemical concentrations, is the source of absorption at short

wavelengths (Kirchstetter et al. [2004]). The relative contribution of BC and OC varies

considerably depending on the fire type and smoke age. BC is usually more associated

with hot, flaming fires, while OC is greater in cooler, smoldering fires. Since our smoke

plume was created by young fires with many hotspots, we expect that BC will dominate.

Initially we did include a retrieval parameter that allowed the refractive index to increase

linearly (as wavelength decreases) for wavelengths less than 532nm. However, most of our
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retrievals converged to a solution with no imaginary refractive index spectral dependence.

Segments that did converge with a spectral dependence typically had a large residual error.

We therefore conclude that either an imaginary refractive index spectral dependence does

not exist for this smoke, or we are not sensitive to it. We therefore used a spectrally flat

imaginary refractive index in our retrievals.

To facilitate comparison of our results with data collected by other instruments, we

computed a variety of other aerosol properties using the retrieved aerosol properties. These

derived parameters are listed in Table 3.2, along with information about the method used

to derive them if they are not byproducts of the forward model. Retrieved parameter un-

certainty was determined from equation 3.12 as described above, and derived parameter

uncertainty was calculated numerically as in equation 3.13.

3.2.3.4 Atmospheric layer heights

As discussed in Waquet et al. [2009a], absorbing aerosol properties are difficult to retrieve

without information about their vertical distribution. This paper is therefore intended to

test how to best model absorbing aerosol vertical distribution. To do so, we performed

optimizations with and without data supplied by the HSRL, and compare the results.

Retrievals performed without HSRL data modeled aerosols in a single, uniform layer

attached to the ground. The top of the layer was allowed to vary as an optimization param-

eter. As listed in table 3.1, the initial altitude was 5000m, while initial values for aerosol

number concentrations were selected to replicate the mean optical depth for biomass burn-

ing aerosols as given by Dubovik et al. [2002].

Unlike traditional backscatter lidars, the HSRL has the ability to discriminate between

aerosol and molecular backscatter in the 532nm channel. This provides an independent

estimation of aerosol extinction and backscatter coefficients, and means that the observed

aerosol optical depth is directly estimated with no microphysical assumptions required. A

more detailed description of this instrument can be found in Sect. 3.2.4.1. To find aerosol

layer top and bottom heights, we took the derivative of the aerosol volume backscatter co-
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Figure 3.2: Sample results from an optimization using HSRL data. In the top panels, mea-
sured reflectances, and their associated errors, are plotted with solid lines with respect to
the view zenith angle. Model results are plotted with dashed lines. Negative view zenith
angles indicate aircraft forward scan directions, while positive values represent aft obser-
vations. RQ is plotted on the left, while RI is on the right. The bottom panels display the
measurement minus model residuals. Dotted lines in these panels indicate the total error
associated with that observation. 410mn results are in blue, 470nm in purple, 555nm in
cyan, 670nm in green, 865nm in red and 1590nm in magenta.

efficient, b, after it had been weighted by the two pass atmospheric transmission (using the

extinction coefficient, ke) from the specified altitude, h, to the aircraft altitude, ha (equation

3.14). Arbitrary thresholds were set for the result, γ(h), where absolute values above the

threshold indicate an aerosol layer top or bottom.

γ(h) =
d

dh

(
b(h)e−2

R ha
h ke(h′)dh′

)
(3.14)

Aerosol layer heights were fixed within the optimization, and aerosols were distributed

evenly with respect to pressure throughout each layer. The results of this layer identification

can be seen in the first panel of Fig. 3.3. Red dashed lines indicate the tops and bottoms

of the pair of layers identified using equation 3.14. An additional piece of information
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from the HSRL is the total column aerosol optical depth at 532nm. This was used to

select a priori nc and nf , which were distributed according to the aerosol optical depth

in each layer. The relationship between n and aerosol optical depth was determined by

the extinction cross-section calculated by the forward model for initial values of refractive

index and size. Ratios of aerosol optical depth for both modes between different layers was

maintained throughout the optimization.

3.2.4 Validation data

Results of the optimization with and without HSRL data were compared to a variety of con-

temporaneous measurements by other instruments. The first comparison we made was be-

tween optimization results and HSRL observations of aerosol optical thickness, τ , and the

backscatter to extinction ratio, S, at 532nm. The former comparison is somewhat compro-

mised by the fact that it was used to set the initial aerosol number concentration. However,

since the initial values for size and complex refractive index are different than the retrieved

values, the optical depth of a specified aerosol number concentration must also change.

All of these values are unconstrained, so agreement between RSP and HSRL optical depth

is by no means guaranteed by the choice of the initial value. In addition to comparisons

with the HSRL, the B-200 flew in coordination with the NASA P-3 aircraft, which carried

two instruments of interest to us. The AATS-14 instrument provided the column aerosol

optical thickness (above the aircraft) in fourteen narrow wavelength channels. The aerosol

Ångström exponent, α, was also calculated using these data. The HiGEAR suite of in situ

sampling instruments provided the aerosol absorption (ka) and scattering (ks) coefficients,

from which the single scattering albedo, " is derived. HiGEAR instrument suite also mea-

sured aerosol size information, which we present as the effective radius, re and effective

variance, ve. Details about the collection of these data and the motivation for their use to

validate RSP aerosol property retrievals are described below.
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3.2.4.1 HSRL

The HSRL, as described above and in more detail in Hair et al. [2001, 2008] and Rogers

et al. [2009] is a dual band (532 and 1064nm) lidar that was deployed along with the RSP

on the B-200 aircraft. The HSRL uses an iodine cell with a narrow spectral absorption

feature centered on the laser line at 532nm to absorb radiation scattered by aerosols (close

to the laser line) and transmit light scattered by molecules (Doppler shifted away from

the laser line). Another channel is used to measure the light scattered by aerosols and

molecules at 532nm, similar to the usual elastic backscatter lidar measurement. This capa-

bility means that the HSRL can distinguish molecular from aerosol backscatter without the

microphysical assumptions that are required for regular lidars. At 1064nm, the typical lidar

approach is used, although the 532nm measurements can be used to constrain the derivation

of backscatter profiles (Hair et al. [2008]). The HSRL also observes the depolarization ra-

tio, d, which is the ratio of the perpendicular (cross-polarized) to parallel polarized aerosol

backscatter coefficient. This parameter provides a measure of the sphericity of the aerosols

since is a unitless ratio. In the case of single scattering it is zero for spheres. During this

scene, the HSRL observed particulate depolarization of about 0.05, with is small enough

that the aerosols can be treated as spheres (as they are in our radiative transfer model).

The spherical assumption is reasonable for slightly aged smoke particles, which start as

filaments and collapse into more compact shapes in the first few hours after creation (Abel

et al. [2003], Reid and Hobbs [1998], Liu et al. [2008]).

3.2.4.2 AATS-14

The Ames Airborne Tracking Sunphotometer (AATS-14) is a fourteen channel (354nm to

2139nm) autonomous sun tracking sun photometer. It is mounted externally on the top of an

aircraft, and provides above aircraft aerosol optical thickness automatically by continuously

tracking the direct solar beam. This is successful provided the solar disk is not obscured by

clouds or interference from the aircraft body and that the aircraft angular motion does not

exceed 8◦ per second. Calibration is extremely stable, typically maintained within 1% over
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the course of about a year. The AATS-14 has been deployed on a variety of aircraft during

field campaigns since 1996 (for example, Russell et al. [1999], Schmid et al. [2003, 2006],

Redemann et al. [2005] and Livingston et al. [2009]). During ARCTAS, the AATS-14

was mounted on the P-3 aircraft, which flew under the B-200 at a low altitude (Shinozuka

et al. [2010]). AATS-14 should provide an excellent measure of the spectral dependence

of aerosol optical depth. As we will see below (with the in situ instrument data), there are

smoke related aerosols at the P-3 altitude, even if the total quantity of aerosols between the

P-3 and the ground is much less than the quantity above. Thus, the column aerosol optical

thickness that we observe with the RSP is at least as large as the values measured by the

AATS-14, and should be slightly higher.

For validation purposes, we want to compare aerosol optical thickness at the same

wavelength. The RSP optimization software can produce an optical thickness at any wave-

length (with an extra radiative transfer model run with the final parameters at the specified

wavelength), while the HSRL only provides an independent measure of column aerosol

optical thickness at 532mn. This is not an AATS channel (the closest is 525nm), so AATS

aerosol optical thickness at 532nm was determined by fitting an exponential function to the

spectral data. Uncertainty values were interpolated in the same manner.

3.2.4.3 HiGEAR

HiGEAR is a suite of instrumentation deployed by the University of Hawaii on the P-

3. HiGEAR provided validation data in the form of absorbing and scattering coefficients

(from which the Ångström exponent and single scattering albedo can be derived) and the

aerosol particle size distribution. Some examples of results from previous field campaigns

can be found in Clarke et al. [2007] and McNaughton et al. [2009]. Shinozuka et al. [2010]

integrated the in situ measurements over the vertical profiles flown during ARCTAS, and

demonstrated that the resulting layer aerosol optical depth agrees with AATS-14 measure-

ments within 3% or 0.02.

The aerosol size distribution was determined by two instruments. The Long Differential
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Mobility Analyzer (LDMA) counts particles in the 0.01 to 0.5µm diameter range (Clarke

et al. [1998]). The LDMA maintains the aerosols at ambient temperature and pressure, at

dry (less than 30%) humidities. Particles in the 0.5 to 10µm range were measured by a

TSI model 3321 aerodynamic particle sizer (APS) (McNaughton et al. [2007]). Like the

LDMA, the APS operates at ambient temperature and pressure at dry humidities. Effective

radius and variance were calculated by fitting a log-normal distribution to the data and

deriving the effective radius and variance values from the fit parameters (see Eq. (2.60) and

the next page of discussion in Hansen and Travis [1974]). The log-normal distribution is

n(r) =
1

rσg(2π)1/2
e
−(ln r−ln rg)2

2σ2
g (3.15)

where r is the aerosol radius and n(r) is the number density of aerosols at radius r. rg and

σg are the fit parameters, and are used to derive the effective radius, re, and variance, ve,

with

re = rg(1 + ve)
5/2 (3.16)

ve = eσ2
g − 1 (3.17)

This fitting was performed to avoid the noise sensitivity associated with direct computation

of effective radius and variance (Eq. (2.53) and (2.54) in Hansen and Travis [1974]), which

are functions of the second, third and fourth moments of the size distribution, and therefore

more prone to noise. Measurement uncertainty is the uncertainty associated with the fitting;

observations with large uncertainty in either effective radius or variance indicate that the

aerosol size distribution is not well represented by a log-normal distribution. Furthermore,

fitting was performed with a bimodal size distribution (the total number concentration was

the summation of two terms like that in equation 3.15). However, since the fine mode

dominated the coarse mode to such a degree that the latter was difficult to even detect,

subsequent comparisons of RSP and HiGEAR size distributions apply to the fine mode

only.
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Scattering and absorption coefficients are necessary to compute the Ångström exponent

and single scattering albedo. Scattering coefficients were measured at 450, 550 and 700nm

by a TSI model 3563 nephelometer. Data were corrected for ambient temperature and

pressure and relative humidities within the instrument were low, no more than 30%. The

Particle Soot Absorption Photometers (PSAP) measured the absorption coefficient at 470,

530 and 660nm. Measurements were corrected according to the methodology of Virkkula

et al. [2005], and represent values at ambient temperature and pressure. The Single Scatter-

ing Albedo is calculated by combining both measurements with the ratio " = σs/(σs+σa).

This was done after interpolating the scattering and absorbing coefficients to 532nm. The

nephelometer has a higher measurement frequency than the PSAP, so temporal averaging

of the scattering coefficient was also required.

3.3 Results

The primary goal of this paper was to test how observations from lidars such as the HSRL

can be used to improve the analysis of RSP observations of optically thick smoke. We

therefore performed a number of optimizations that incorporated HSRL data, then repeated

them without that data and compared the results. This approach was taken so that the

variability of retrieval results across the scene can be used to investigate the success of

the method, and so the results can be compared in a statistical sense. The HSRL data

that were incorporated into the RSP analysis included both an initial estimate of aerosol

number concentration (derived from the HSRL optical depth at 532nm and the initial guess

of aerosol size and refractive index) and the aerosol vertical distribution defined as layers.

Table 3.8 in the appendix lists the time and location of the individual data segments.

Of note is the large difference (between 20◦ and 30◦) between the aircraft heading and the

actual ground track. This large ’crab’ angle is due to the high winds experienced by the B-

200 because of the proximity to the polar jet that day. Since the RSP was therefore unable to

scan in the plane of forward motion, the spatial extent of a data segment, when projected at
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the aerosol altitude, was larger in the cross track than the along track direction. This can be

seen in Fig. 3.1, where the white polygons indicate the spatial extent of each data segment.

For this reason, geometry data from the aircraft Inertial Monitoring Unit (IMU) was crucial.

Unfortunately, we also found that there was occasionally some uncertainty associated with

the IMU heading angle. A small correction to the heading angle was applied in order

to ensure that the linear polarization angle remains parallel or perpendicular to the plane

of scattering. This is what we expect for Fresnel (single interaction) polarized surface

reflectance, so we use 2250nm observations at scattering angles away from backscatter for

this purpose, as those observations have the largest surface contribution to total reflectance.

Tables 3.3 and 3.4 contain the mean and median values for retrieved and derived pa-

rameters, respectively, for retrievals with and without HSRL data. Table 3.5 contains com-

parable results from the validation data. Both mean and median values are presented, as

differences between them indicate the possibility that values are not normally distributed.

This is the case for several of the parameters for retrievals without HSRL data, such as the

effective variance (ve,f ), fine mode number concentration (nf ), and scattering and extinc-

tion cross-sections (σs and σe). Since equivalent parameters measured by in situ instrumen-

tation do not indicate a non-normal distribution, this is the first indication that the retrievals

performed without the HSRL may not be successful.

Fig. 3.3 shows latitude indexed comparisons between RSP, HSRL, AATS and HiGEAR

data, essentially the results as the aircraft flew through or above the smoke plume. Latitude

was used as the reference because of the slight temporal difference between the B-200

and P-3 aircraft. The aircraft were traveling generally to the south, which in these plots is

from left to right. HSRL data are the source of the imagery in each plot. The top panel

is the aerosol backscatter coefficient at 532nm (km−1 sr−1), which clearly shows elevated

layers of aerosols at 3 to 4 km. While most of the backscatter in the profile occurs at

the elevated level, the presence of backscatter below that layer indicates that aerosols are

distributed down to the surface. The dashed white line overlay in this plot is the top of

the aerosol layer as retrieved from RSP data when HSRL data are not utilized. Clearly, this
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value is inconsistent, and rarely matches HSRL observations. Red line overlays indicate the

layers derived from HSRL data using equation 3.14, while the orange dashed line near the

bottom of the panel indicates the P-3 altitude (and thus the altitude of AATS and HiGEAR

observations).

Our validation rests on several assumptions about the vertical distribution of aerosols

that we acknowledge are somewhat contradictory. While these contradictions may phys-

ically exist, we believe that their radiative impacts are small enough so that they may be

neglected. These assumptions are:

1. the P-3 aircraft was flying in aerosols with the same properties as observed from

above by the RSP on the B-200, so that HiGEAR observations provide a valid test of

RSP retrieval results,

2. the P-3 is flying under a sufficiently large portion of the column aerosol burden that

AATS optical thickness can be compared to RSP retrieved results, and

3. aerosols in the direct solar beam measured by the upward looking AATS on the P-3

are the same as those observed by the downward viewing RSP on the B-200.

The HSRL data provide some indication as to the validity of these assumptions. For

example, the HSRL extinction to backscatter ratio at 532nm is nearly uniform (about 50 sr)

within the plume, indicating that the aerosol optical properties, at least as they are expressed

in that ratio, are vertically consistent. Furthermore, the total optical depth from HSRL and

AATS are also quite similar, which means that the AATS is observing a significant portion

of the total aerosol column. At the solar zenith angle for our scene, the horizontal distance

at the top of the aerosol layer between a zenith view from the P-3 and where the direct

solar beam illuminating the P-3 enters the layer is on the order of two kilometers. Since

the spatial resolution of a single scan at aerosol layer height is 65m (see Sect. 3.2.1), and

given that aircraft crab angles enlarge the spatial resolution in the cross track direction (see

earlier in this section and the white sample polygons in Fig. 3.1), we can expect that AATS

observations are physically close to RSP and HSRL observations.
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Another assumption we make is that spheres are an appropriate geometric model for

scattering by aerosols. We are confident that this is the case, since the HSRL observes

depolarization ratios less than 0.04 (at 532nm) throughout the column, indicating that the

aerosols can be treated optically as spheres (Hair et al. [2008]).

Comparisons between RSP, AATS, HSRL and HiGEAR data are shown in the rest of

the panels in Fig. 3.3. In each panel, RSP optimizations without HSRL data are in black,

while optimizations using HSRL data are in red, and are staggered slightly with respect

to latitude to aid visualization. AATS data are presented in blue, HSRL data in cyan, and

HiGEAR data in green.

While this will be covered in more detail in Sect. 3.4, it is clear in Fig. 3.3 that the RSP

retrievals without HSRL data are converging to two, significantly different, types of solu-

tions. The first solution, which is similar to what is retrieved from RSP when HSRL data

are used, involves low absorption and narrow size distribution aerosols, with real refractive

index values less than 1.55. This agrees with results from the HiGEAR data for single scat-

tering albedo and fine mode effective variance, and to a lesser degree effective radius. A

second solution, retrieved only when the RSP is not using HSRL data, are aerosols that are

very absorbing, very small, with large effective variances and real refractive indices. Since

the results of this second type of solution do not agree with HiGEAR, we assume that the

optimization has found a false minimum in the cost function representing aerosols that may

not be physically realistic but are optically a reasonable match to the RSP observations.

Presumably, this false minima is not found when the optimization uses HSRL data because

those optimizations are started with a physically realistic fine mode number concentration.

However, despite their size and refractive index differences, the aerosol optical thicknesses

of both states are quite similar and match HSRL and AATS observations of spectral optical

depth extremely well. Optical depth retrievals do therefore appear to be robust against the

uncertainties caused by multiple minima in the measurement cost function.

The bottom panel of Fig. 3.3 contains two measures of optimization success. Solid

lines are the Shannon information content, Hs, in parameter space as defined in Rodgers
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[2000] as

Hs =
1

2
ln

∣∣(JT C−1
T J + C−1

a

)
Ca

∣∣ (3.18)

The information content represents the decrease in uncertainty following optimization, or

equivalently the reduction in entropy. It is directly related to the volume of uncertainty

for a given confidence level before and after the measurement process. Uncertainty prior

to optimization is expressed by the a priori error covariance matrix, Ca, while the uncer-

tainty following optimization is the error covariance matrix, CT projected into state space

using the Jacobian matrix. The solid lines in the bottom panel of Fig. 3.3 are this infor-

mation content, which is slightly larger for retrievals using HSRL data during optimization

compared to retrievals without HSRL data. Alternatively, optimization success can be ex-

pressed in observation space by the final value of the cost function as defined in equation

3.2 and plotted as dashed lines in Fig. 3.3. Like the information content, the final cost

function value is slightly worse for optimizations performed without HSRL data, but does

not indicate a convergence failure.

Fig. 3.4 presents the mean spectral aerosol optical thickness from the AATS instrument

compared to both types of RSP optimization results. All three are nearly identical, with

the exception of the of the very longest wavelengths, where optical thickness values are

extremely low. This further illustrates how the spectral optical thickness is not affected by

the divergent states retrieved with and without HSRL data.

3.4 Discussion

The primary goal of this paper is an investigation of the utility of lidar data in constraining

and improving aerosol property retrievals with the RSP. First, we want to determine if the

retrieved aerosol properties, when using HSRL data, are at least representative of boreal

forest fire smoke. This appears to be the case. Comparisons with the ground sun pho-

tometer derived climatologies in Dubovik et al. [2002] show that our results are consistent
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with the boreal forest biomass burning class. Of course, this was also the source of the

initial optimization values, so this comparison is only meaningful in the sense that it shows

the results did not stray far from their original values. Unfortunately, there are few ob-

servations, other than AERONET, of boreal forest fire smoke that simultaneously retrieve

refractive index, size and concentration. One additional source is the three wavelength lidar

observations of Müller et al. [2005], who studied boreal forest fire smoke transported long

distances from Canada to Germany. Complex refractive index and single scattering albedo

both are consistent with our results. However, Müller et al. [2005] finds significantly larger

aerosols, with an effective radius of 0.36 ± 0.05µm for the entire size distribution, com-

pared to our 0.14 ± 0.02µm for the fine mode and 0.22µm for the entire size distribution

for retrievals that use HSRL data as a constraint. One explanation for this difference is the

growth associated with smoke aerosol aging (Reid et al. [1998], Müller et al. [2007]), as

our aerosols are much younger than those transported across the Atlantic to Europe. While

few measurements of refractive index exist that are more accurate than the uncertainties in

our retrievals, there are many measurements of single scattering albedo, which is closely

related to the imaginary refractive index. Our value of 0.96 (at 532nm) is somewhat high

compared to tables in the review by Reid et al. [2005a], indicating a low level of absorption

for smoke aerosols. Boreal forest fires are known to produce less absorbing aerosols, and

indeed the ’likely optical properties’ for ’Temperate/Boreal Forest Aged’ aerosols in Reid

et al. [2005a] agree within uncertainties, with a value of 0.915 ± 0.05.

RSP results are compared to in situ observations of the smoke plume in Table 3.5, and

Figs. 3.3, 3.4, 3.5, and 3.6. Optical thickness retrievals, both with and without HSRL

data, compare well with HSRL column and AATS observations. Furthermore, the optical

thickness spectral dependence is also well retrieved, as can be seen in Fig. 3.4. There is

some difference at the longest wavelengths, but the magnitude of the optical depth at those

wavelengths is so small that the estimates agree within measurement uncertainty. The only

surprising aspect of the aerosol optical depth comparisons is the large RSP retrieval uncer-

tainties (this will be discussed more below). ’Successful’ RSP retrievals (we will use this
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term to describe retrievals that used HSRL data and the retrievals without HSRL data that

found nearly identical parameters) of single scattering albedo are slightly higher than, but

within the uncertainty range of, HiGEAR observations. ’Unsuccessful’ RSP retrievals of

single scattering albedo (those performed without the aid of HSRL data that are substan-

tially lower than ’successful’ RSP retrievals or HiGEAR in situ observations) are drasti-

cally lower and generally have larger uncertainties. Comparisons to HiGEAR observations

for size distribution appear reasonable for ’successful’ RSP retrievals, with slightly larger

effective radii and comparable effective variance values. ’Unsuccessful’ RSP retrievals

have smaller effective radii, and much larger effective variance values than HiGEAR ob-

servations. Agreement for effective radius and variance were within uncertainties for both

’successful’ and ’unsuccessful’ retrievals, although it should be noted that HiGEAR uncer-

tainty values are rather large. This is most likely related to the deviation of the actual size

distribution from the log normal function to which we are fitting. In fig. 3.6 we show the

size distribution for a ’successful’ and ’unsuccessful’ RSP retrieval (Scan 170 in Table 3.8)

compared to the closest HiGEAR observation. While this will be discussed in more detail

below, it is notable that all three distributions are very similar in the 0.1-0.6 µm range.

’Unsuccessful’ retrievals have an excess of small particles and the ’successful’ retrievals

have a deficit of small particles compared to the HiGEAR size distribution. Finally, we

should note that we do not have in situ observations of the real refractive index for compar-

ison. As mentioned above, ’successful’ retrievals have refractive indexes that are similar to

published boreal forest fire smoke values, although methods used to determine those pub-

lished values have large uncertainty. ’Unsuccessful’ retrievals have much larger values that

could possibly be associated with smoke particles containing significant amounts of Black

Carbon (which would be consistent with the larger absorption of these retrievals). Our hy-

pothesis that this is not physically the case is based upon the larger (complex) refractive

index uncertainty of these retrievals and their physically unrealistic size distribution and

single scattering albedo when compared to HiGEAR observations.

The use of lidar data from the HSRL did improve RSP retrievals, but not in the way
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we anticipated. We had expected that an appropriate vertical distribution of aerosols would

create retrievals that match in situ observations better and reduce their uncertainties. While

retrievals utilizing HSRL data are reasonable, about half of the retrievals performed with-

out HSRL data converged to nearly the same solution with equivalent uncertainties (what

we call ’successful’ retrievals above). However, the other half of retrievals without HSRL

data converged to an alternate solution that, while physically possible, is less consistent

with in situ observations and has higher retrieval uncertainties (what we deem to be ’un-

successful’ retrievals). This appears to happen not because of an inappropriate vertical

distribution (otherwise the ’successful’ retrievals performed without HSRL data would not

be so similar to those with HSRL data), but because of the initial values used to initiate

the Levenberg-Marquardt iteration. Generally, the selection of inital parameter values is

straightforward if there are clues to the type of aerosols present in the scene. In our case,

the aerosols are obviously boreal forest fire smoke, so we used the climatology for this type

from Dubovik et al. [2002]. Dubovik et al. [2002] do provide mean values of aerosol optical

thickness (from which number concentration can be derived if the extinction cross-section

is known), but the range of reported values is so large that the aerosol number concentration

is unconstrained by climatology. This is because it is not an inherent quality of the aerosol

type itself. Furthermore, aerosol optical thickness is log-normally, rather than normally,

distributed (O’Neill et al. [2000], Knobelspiesse et al. [2004]), which means there is the

possibility of very large concentrations that are far from the arithmetic mean. The selec-

tion of the initial value for the number concentration is therefore quite difficult. As we see

here, an incorrect selection can converge to a physically feasible local minimum in the cost

function that is noticeably different from the minima that agrees with in situ observations.

The HSRL data, then, were important because it was used to choose the initial number con-

centration, and the result was convergence to a much more consistent retrieval with lower

uncertainties.

We next want to address why the specific set of parameters retrieved in ’unsuccessful’

cases matched RSP observations so well. As we can see from the dashed lines in the bottom
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panel of Fig. 3.3, there is no obvious difference between the squared error for ’successful’

and ’unsuccessful’ retrievals. Both cases are capable of matching RSP observations well,

so in this case fit quality does not distinguish between ’successful’ and ’unsuccessful’ re-

trievals. To illustrate, Fig. 3.5 shows the match of model results to RSP observations for

segment 170 (see table 3.8). Retrieval results without HSRL data were ’unsuccessful’ in

this segment, but their simulated total and polarized reflectances (dashed lines) are not dra-

matically different than those for a ’successful’ retrieval using HSRL data (dash-dot lines;

RSP data are solid lines). It appears that both ’successful’ and ’unsuccessful’ retrievals are

similar in the observation space, Y. Fig. 3.6 presents an interesting clue as to why this

may be the case. In this plot, the retrieved size distributions for segment 170 are shown,

along with the closest HiGEAR observation. There are considerable differences between

the retrieved and observed size distributions for very small and coarse mode aerosols, but

a striking similarity for radii between 0.1 and 0.6 µm. It appears that this size range is

the optically relevant portion of the size distribution, and that the optimization technique

faithfully matched those sizes, albeit in two very different ways. Another possibility is

that multiple scattering effects (recall that this is a scene with a large optical thickness and

thus significant multiple scattering) could mask differences between the two aerosol states.

Fig. 3.7 presents the single scattering total (left) and polarized (right) phase functions at

532nm for the same segment with (solid) and without (dashed) HSRL data. The full phase

function is plotted in the top row, while a zoom of the scattering angles we observe is in

the bottom row. Clearly, there is a difference in single scattering properties between the

two states, and this appears to be masked by multiple scattering (as we can see in Fig. 3.3).

The lower single scattering albedo for the ’unsuccessful’ case must be compensating for

the larger phase function magnitude when multiple scattering is considered, since the an-

gular dependence over the range of observation angles is similar for both ’successful’ and

’unsuccessful’ phase functions. Indeed, the high absorption retrieved in the ’unsuccess-

ful’ cases can be seen as a symptom of an incorrect size distribution, as that absorption is

needed to account for the larger amount of scattering by the smaller size distribution at the
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observed scattering angles.

Differences between ’successful’ and ’unsuccessful’ retrievals imply that there is a

trade-off between the number of small particles (less than 0.1µm and complex refractive

index that is weakly constrained by the observations. Both cases represent minima that are

within the range of plausible aerosol properties, so success is highly dependent on initial

value. This situation appears similar to results from an analysis of simulated ground based

estimates of polarized sky observations (Cairns et al. [1997a]). Simulated retrievals were

performed for haze and bimodal aerosol size distributions. Haze effective radius was cor-

rectly retrieved, but there was a substantial overestimate of small particles. The retrieved

real refractive index for this case was about 0.1 larger than it should be, and the effective

radius was quite different. These errors are similar to our ’unsuccessful’ case, especially

since both the simulation and the retrieval size distributions were similar in the 0.1-1.0 µm

range (see Fig. 5b in Cairns et al. [1997a]). Furthermore, differences between the single

scattering phase functions were masked by multiple scattering when modeling an optical

depth of 0.5.

This illustrates a weakness in the ability to retrieve the number of aerosols whose size

is large enough to activate as a cloud condensation nuclei (CCN) at higher supersaturations

(roughly 0.03 to 0.07 µm). The number of aerosols in this size range is important if we

are to understand aerosol indirect effects on clouds, since Dusek et al. [2006] found that

cloud nucleation is more determined by the aerosol size distribution than its chemical com-

position. However, aerosol plumes with number concentrations and opacity as thick as we

have observed may also have difficulty nucleating in an updraft because of the strong com-

petition for water vapor between particles. Sensitivity to CCN sized aerosols is a topic of

ongoing interest that needs to be addressed for polarimetric remote sensing at lower aerosol

optical depths, where concentrations of smaller particles may be important for the creation

of cloud droplets.

The large uncertainty in the retrieved aerosol optical thickness must also be discussed.

Aerosol optical depth uncertainty for both ’successful’ and ’unsuccessful’ retrievals is typ-
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ically about 50%, which in an absolute sense has an average value 0.39 at 532nm for re-

trievals that use HSRL data. To find the source of this error we break down the components

of the summation in equation 3.13, which are displayed in table 3.6. Uncertainties in ef-

fective radius are by far the largest source of optical thickness uncertainty, although uncer-

tainties from effective variance, real refractive index and the correlation between effective

radius and variance are also large contributors. It appears that the problems associated with

a proper retrieval of the size distribution cascade down to the uncertainty analysis for opti-

cal depth. Even so, optical depth retrievals match in situ observations very well, and do not

exhibit a sampling variability that is consistent with the large uncertainty in optical depth

indicated by the analysis. The standard deviation of the set of HSRL assisted retrievals of

optical thickness at 532nm is 0.05, which is far smaller than the mean assessed uncertainty,

0.39. This indicates that the assessment of optical thickness uncertainty is too high.

It is possible that our observation error covariance matrix, CT , is too large. A break-

down of the relative magnitude of the components of equation 3.3 shows that the error due

to aircraft pitch angle, Cp, is the largest contributer to the total error covariance matrix. This

is based upon a rather arbitrary selection of 0.5◦ as the error in pitch angle. As described

in Sect. 3.3, the Inertial Monitoring Unit (IMU) onboard the B-200 was not very accurate

(and has since been replaced), so we needed to correct the heading and pitch angles. We

did so by confirming that various features in observed data were aligned properly, including

the polarization azimuth. We then chose the uncertainty in pitch and heading angle (0.5◦

each) to represent our best guess for our accuracy during that alignment. It is possible that

we chose too large of an error for the pitch angle. Reducing the pitch angle error to 0.1◦

significantly reduces the assessed error. If this is done for our sample segment (170), the

norm of the error covariance matrix is reduced by 32% and the optical thickness error is

reduced from 46.6% to 35.1%. Pitch angle error reduction affects nearly all parameters,

but the greatest impact is for optical thickness, as is displayed in table 3.7. In that table,

we also show the uncertainties computed without any geometry related errors (as will pre-

sumably be the case for orbital sensors such as APS). Uncertainties are further reduced,
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although optical thickness still has a relatively large 28.2% error. Another large contributer

to CT was Cag, which we included to account for the variability of the set of scans we

averaged for each segment. Cag is not as large as Cp, but its reduction could also bring

the optical depth uncertainty down to a level that is more consistent with what one would

expect based on sampling uncertainty. In other scenarios, averaging over a greater number

of scans would reduce Cag, but because of the large spatial variability we encountered in

this plume we did not take this additional step.

3.5 Conclusion

In this paper, we have retrieved aerosol parameters of smoke from recent boreal forest fires.

This is a particularly difficult type of aerosol to retrieve because it is both absorbing and

unevenly distributed vertically, which is information that is difficult to retrieve simulta-

neously. We tested the utility of lidar data when calculating optimal estimates of aerosol

properties using our airborne polarimeter. To do so, we did about twenty retrievals on data

collected when our instrument, the RSP, was overflying a fresh smoke plume. We per-

formed these retrievals with the RSP data alone, and then repeated them using information

gathered by a lidar instrument called the HSRL. This information included observations of

the altitude of the elevated aerosol layer and the aerosol column optical depth. The latter

was used to compute the initial value for number concentration during optimization, while

the aerosol layer altitude was held fixed with the structure determined by the lidar.

We retrieved aerosols that are characteristic of boreal forest fire smoke when our opti-

mizations were constrained by HSRL data. These aerosols compared well to a variety of

in situ observations measured concurrently within the smoke plume. Retrievals performed

without HSRL data were successful (in terms of matching the HSRL constrained retrievals)

only about half of the time. While ’successful’ retrievals without HSRL data were nearly

identical to retrievals performed with the aid of HSRL data, ’unsuccessful’ retrievals found

aerosols that were small (but with very wide size distributions and an excess of small par-
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ticles) with unusually large real and imaginary modes of the complex refractive index (the

latter indicating significant absorption). These ’unsuccessful’ retrievals occur because the

initial number concentration value is too far from the actual solution and the optimization

became trapped in a local minimum. HSRL estimates of aerosol optical depth (and thus

number concentration) were therefore an important factor in retrieval success, and resulted

in more consistent and stable results for the set of analyzed scenes.

This work presents a strong argument that operational remote sensing of high loads of

small particles with instruments such as the Aerosol Polarimetry Sensor will require either

an independent estimate of number concentration, or the help of a table lookup to pro-

vide an initial value. Otherwise, incorrect values may be retrieved for refractive index and

size, although it is important to note that mean retrieval single scattering albedos with and

without HSRL data are within an acceptable uncertainty range of in situ observations. In

all cases the spectral optical depth retrievals were consistent with AATS-14 measurements.

Despite the substantially different microphysical retrievals, this retrieved property is robust.

Aerosol vertical distribution does not appear as important as it was for the smoke aerosols

analyzed by Waquet et al. [2009a], but this may be due to the large vertical extent and weak

absorption of this boreal forest fire smoke.

We have also demonstrated the importance of an accurate understanding of aircraft

geometry for retrievals such as this. Our error estimate of 0.5◦ for the view zenith angle

was the largest contributor to our error covariance matrix and is responsible for the very

large estimate of uncertainty for aerosol optical thickness (although it contributed to the

uncertainty of all retrieved parameters).

The RSP and HSRL instruments remain on the B-200 aircraft in anticipation of the

NASA Glory satellite launch. Validation field campaigns including in situ measurement

instrumentation will have the capability to repeat the comparison methods presented here,

and hopefully establish the utility of future APS observations for a variety of aerosol types.
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3.6 Appendix

The retrieval segment location, time, and solar and instrument geometry is presented in

table 3.8.
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Table 3.1: Retrieved aerosol parameters and the initial values used in optimization. Param-

eters listed in italics are optimized during the retrieval, while all others are kept constant.

†: Refractive Index values have no spectral dependence. ‡: For optimizations that utilize

data from the HSRL, the a priori number concentration is determined by the HSRL obser-

vations. §: For optimizations that utilize data from the HSRL, the aerosol layer height is

fixed by HSRL observations and not changed during optimization.

Parameter Symbol Unit a priori

Fine mode parameters

Real refractive index † )(mf ) n/a 1.52

Imaginary refractive index † ,(mf ) n/a 0.0094

Effective radius re,f µm 0.15

Effective variance ve,f n/a 0.20

Number concentration‡ nf # µm−2 5.5

Coarse mode parameters

Real refractive index † )(mc) n/a 1.52

Imaginary refractive index † ,(mc) n/a 0.0094

Effective radius re,c µm 3.21

Effective variance ve,c n/a 0.23

Number concentration‡ nc # µm−2 0.0001

Other parameters

Aerosol height§ h m 5000
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Table 3.2: Derived aerosol parameters. λ is wavelength.

Parameter Symbol Unit Calculation

Scattering cross-section σs(λ) µm2 model byproduct

Absorption cross-section σa(λ) µm2 model byproduct

Extinction cross-section σe(λ) µm2 σe(λ) = σa(λ) + σs(λ)

Asymmetry parameter g(λ) n/a model byproduct

Aerosol optical thickness τ(λ) n/a τ(λ) = nσe(λ)

Ångström exponent α n/a Slope of ln(λ) vs. ln(σe(λ))

Single scattering albedo "(λ) n/a "(λ) = σs(λ)/σe(λ)

Phase function at backscatter P11(λ, Θ = 180◦) n/a model byproduct

Backscatter extinction ratio S(λ) sr 4π/ ["(λ)P11(λ, Θ = 180◦)]

Table 3.3: Directly retrieved aerosol parameters. The mean and median are calculated for
the set of optimizations. Uncertainties (denoted ±) are the median value returned by the
optimization routine. Ratios are the standard deviation of the set of optimization results
divided by the median optimization uncertainty.

Parameter without HSRL with HSRL

median mean median mean
)(mf ) 1.57 1.55 ± 0.075 1.44 1.45 ± 0.054
,(mf ) 0.015 0.016 ± 0.0064 0.005 0.005 ± 0.0036
re,f 0.10 0.11 ± 0.012 0.14 0.14 ± 0.018
ve,f 0.38 0.32 ± 0.049 0.23 0.24 ± 0.048
nf 82.25 61.74 ± 0.182 14.27 17.04 ± 0.111
nc 0.0001 0.0001 ± 0.0020 0.0009 0.0008 ± 0.0020
h 5475 5457 ± 0.004
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Table 3.4: Derived aerosol parameters. The mean and median are calculated for the set of
optimizations. Uncertainties (denoted ±) are the median value returned by the optimization
routine. Optical thickness (τ ), scattering, absorption and extinction cross-sections (σs, σa

and σe), and single scattering albedo ("), are all expressed at 532nm.

Parameter without HSRL with HSRL

median mean median mean
σs 0.008 0.019 ± 0.0044 0.033 0.032 ± 0.0196
σa 0.0010 0.0010 ± 0.00052 0.0011 0.0010 ± 0.00093
σe 0.009 0.020 ± 0.0048 0.034 0.033 ± 0.0200
τ 0.666 0.671 ± 0.3038 0.695 0.693 ± 0.3903
α 2.35 2.43 ± 0.204 2.53 2.52 ± 0.258
" 0.915 0.917 ± 0.0318 0.960 0.960 ± 0.0210
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Table 3.5: Retrieved aerosol results for validation data. The mean and median are calcu-
lated for the set of optimizations. Uncertainties (denoted ±) are the median value returned
by the optimization routine. Optical thickness (τ ), single scattering albedo (") and the
backscatter to extinction ratio (S) are expressed at 532nm.

Parameter median mean

AATS τ 0.617 0.614 ± 0.0051
HSRL τ 0.650 0.658 ± 0.0200
RSP without HSRLτ 0.666 0.671 ± 0.3038
RSP with HSRLτ 0.695 0.693 ± 0.3903

HiGEAR " 0.941 0.940 ± 0.0007
RSP without HSRL " 0.915 0.917 ± 0.0318
RSP with HSRL " 0.960 0.960 ± 0.0210

HiGEAR re,f 0.112 0.112 ± 0.0022
RSP without HSRL re,f 0.100 0.113 ± 0.0118
RSP with HSRL re,f 0.142 0.140 ± 0.0180

HiGEAR ve,f 0.252 0.252 ± 0.0011
RSP without HSRL ve,f 0.380 0.325 ± 0.0492
RSP with HSRL ve,f 0.230 0.238 ± 0.0476

HSRL S 49.4 49.5 ± 4.5
RSP without HSRL S 54.9 57.2 ± 8.6
RSP with HSRL S 66.0 65.7 ± 12.1
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Figure 3.3: RSP, HSRL, AATS and HiGEAR data are plotted with respect to latitude (air-
craft were flying to the South). The top panel shows the HSRL aerosol backscatter co-
efficient at 532nm. The dashed white line is the retrieved aerosol layer height for RSP
observations that did not include HSRL data. Dashed red lines indicate the HSRL de-
termined aerosol layer heights used for RSP retrievals that used HSRL data. The orange
dashed line indicates the altitude of the P-3 aircraft, which carried the AATS and HiGEAR
instruments. The second panel is the total aerosol optical thickness at 532nm for RSP re-
trievals without HSRL data (black), RSP retrievals with HSRL data (red), AATS (blue) and
HSRL (magenta). That color scheme is maintained for the rest of the panels, with green
indicating HiGEAR data in the third, fourth and fifth panels (Single Scattering Albedo,
Effective Radius and Effective Variance, respectively). The sixth panel, with real refractive
index, contains RSP data alone, indicating the validation difficulty of this parameter. Fi-
nally, the bottom panel is the information content (solid lines) and squared retrieval error
(dashed lines) for the two RSP optimization methods.
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Figure 3.4: Here we compare spectrally dependent aerosol optical thicknesses for AATS
(solid) and RSP retrievals with and without HSRL data (dash-dot and dashed, respectively).
Values represent the average over the time and space shown in Fig. 3.3

Table 3.6: Error components for fine mode optical thickness at 532nm for the segment

170 retrieval with HSRL data and solar zenith angle error assessed at 0.5◦. These are the

elements within the summations in equation 3.13.

nf )(mf ) ,(mf ) re,f ve,f

nf 0.0000 0.0000 0.0000 0.0000 0.0000

)(mf ) 0.0000 0.0143 -0.0002 -0.0379 -0.0100

,(mf ) 0.0000 -0.0002 0.0000 0.0007 -0.0001

re,f 0.0000 -0.0379 0.0007 0.1074 0.0272

ve,f 0.0000 -0.0100 -0.0001 0.0272 0.0141
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ARCTAS June 30, 2008 retrieval comparison
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Figure 3.5: These plots show results from a successful optimization utilizing HSRL
data (dash-dot) compared to an unsuccessful optimization performed without HSRL data
(dashed). This segment is the third from the left in Fig. 3.3, and RSP observed reflectances
are plotted with solid lines. For clarity, the 470, 555 and 670nm bands are omitted, al-
though they show a similar situation: optimization retrieved reflectances are quite similar
for both cases.

Table 3.7: Percent error for the segment 170 retrieval with HSRL data. The first row rep-
resents the original uncertainty assessment. The second is the uncertainty if the error co-
variance matrix is altered to represent a pitch angle uncertainty reduction from 0.5◦ to 0.1◦.
The last row represents the uncertainty if there is no contribution to the error covariance
matrix from heading or pitch error.

τ " nf )(mf ) ,(mf ) re,f ve,f nf

Original CT 46.6% 2.3% 10.8% 5.0% 0.4% 1.8% 3.0% 0.2%
σφ = 0.1◦ 35.1% 1.7% 10.8% 3.6% 0.3% 1.3% 2.3% 0.2%

Cy = Cp = 0 28.2% 1.3% 10.8% 2.9% 0.2% 1.1% 1.8% 0.1%
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Figure 3.6: This plot presents the retrieved and observed size distributions for the segment
in Fig. 3.5. RSP results for a failed optimization without HSRL have dashed lines, RSP
results for a successful optimization using HSRL data are represented as dash-dots, and the
closest HiGEAR size distribution has a solid line. Because of the differences in sampling
area, the HiGEAR data were normalized to the successful RSP size distribution.

Table 3.8: Retrieval segment location, time, and solar and instrument geometry. Altitude is
in meters above sea level. Optimizations without HSRL data for segments marked with a †
were deemed ’unsuccessful’.

Starting Scan index UTC time Latitude Longitude Heading Track Solar Azimuth Solar Zenith Altitude

160† 0 20:28:54 58.040 -104.606 259.7 240.0 213.2 38.3 8681
165 1 20:29:03 58.036 -104.618 256.3 237.0 213.2 38.3 8681
170† 2 20:29:11 58.032 -104.628 255.1 234.5 213.2 38.3 8680
175 3 20:29:20 58.028 -104.639 251.8 230.9 213.3 38.3 8680
180 4 20:29:28 58.024 -104.649 250.0 230.0 213.3 38.3 8681
185† 5 20:29:37 58.019 -104.660 248.2 226.7 213.4 38.3 8681
190 6 20:29:45 58.014 -104.669 246.5 225.0 213.4 38.3 8681
195† 7 20:29:53 58.008 -104.680 246.6 224.3 213.4 38.3 8682
200† 8 20:30:02 58.003 -104.689 246.5 222.3 213.5 38.3 8683
205† 9 20:30:10 57.997 -104.699 244.4 223.0 213.5 38.3 8683
210 10 20:30:19 57.992 -104.708 249.4 222.6 213.6 38.3 8684
215† 11 20:30:27 57.986 -104.718 244.1 222.3 213.6 38.3 8683
220† 12 20:30:35 57.981 -104.728 243.9 223.1 213.6 38.3 8685
225† 13 20:30:44 57.975 -104.738 240.4 223.4 213.7 38.3 8687
230 14 20:30:52 57.969 -104.747 242.1 223.3 213.7 38.3 8687
235 15 20:31:01 57.964 -104.757 242.7 222.1 213.8 38.3 8686
240† 16 20:31:09 57.958 -104.767 241.8 222.6 213.8 38.3 8686
245† 17 20:31:18 57.952 -104.777 240.9 222.5 213.8 38.3 8687
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Figure 3.7: These plots show the phase functions at 532nm of the fine mode aerosols for the
segment in Fig 3.5. Successful optimization results using HSRL data are shown with solid
lines, while unsuccessful optimization results performed without HSRL data have dashed
lines. Plots in the left column are the total (unpolarized) phase function, while plots in the
right column are the polarized phase function. Figures in the top and bottom rows show the
same quantities, although the bottom rows have been zoomed to a scattering angle range
that was observed by the RSP in that segment.
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Chapter 4

Simultaneous retrieval of aerosol and cloud properties

during the MILAGRO field campaign

Estimation of Direct Climate Forcing (DCF) due to aerosols in cloudy areas has histor-

ically been a difficult task, mainly because of a lack of appropriate measurements. The

Aerosol Polarimetry Sensor (APS), on the upcoming NASA Glory mission, has the poten-

tial to retrieve both cloud and aerosol properties because of its polarimetric, multiple view

angle, and multi spectral observations. The APS airborne prototype is the Research Scan-

ning Polarimeter (RSP), which has similar characteristics and can be used to demonstrate

APS capabilities. In the spring of 2006, the RSP was deployed on an aircraft based in Ver-

acruz, Mexico, as part of the Megacity Initiative: Local and Global Research Observations

(MILAGRO) field campaign. On March 13th, the RSP over flew an aerosol layer lofted

above a low altitude marine stratocumulus cloud close to shore in the Gulf of Mexico. We

investigate the feasibility of retrieving aerosol properties over clouds using these data. Our

approach is to first determine cloud droplet size distribution using the angular location of

the cloud bow and other features in the polarized reflectance. The selected cloud was then

used in a multiple scattering radiative transfer model optimization to determine the aerosol

optical properties and fine tune the cloud size distribution. In this scene, we were able to

retrieve aerosol optical depth, the fine mode aerosol size distribution and the cloud droplet

size distribution to a degree of accuracy required for climate modeling. This required as-
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sumptions about the aerosol vertical distribution and the optical properties of the coarse

aerosol size mode. A sensitivity study was also performed to place this case study in the

context of the potential for future systematic APS observations of this kind, which found

that the aerosol complex refractive index can also be observed accurately if the aerosol

optical depth is larger than roughly 0.8 at a wavelength of 0.555µm.

4.1 Introduction

The radiative effects of atmospheric aerosols (suspended particles) are among the least cer-

tain components of global climate models [IPCC, 2007]. Even the most simple aerosol

radiative effect, Direct Climate Forcing (DCF), is difficult to model, mainly due to the het-

erogeneity of aerosol sources, evolution, sinks, and radiative properties, and the difficulties

of global observation (Mishchenko et al. [2009]). DCF is defined as the change in radiative

forcing at the top of the atmosphere from the scattering and absorption of anthropogenic

aerosols, and it neglects more complicated impacts due to aerosol induced changes in cloud

properties or the atmospheric temperature vertical profile. Current modeling capability can

be found in the results of the AeroCom model intercomparison effort. For example, Schulz

et al. [2006] found a DCF range of +0.04 to -0.41 Wm−2. A sensitivity analysis in this work

found that DCF is strongly affected by aerosol forcing efficiency (the radiative forcing of

a unit optical depth). Unfortunately, many factors that change aerosol forcing efficiency,

such as particle size, absorption, and refractive index, are rarely observed to the level of ac-

curacy required by climate models (Mishchenko et al. [2007b]). Furthermore, most aerosol

remote sensing algorithms with passive instruments are successful only in cloudless condi-

tions. Efforts to observe aerosols in the presence of clouds are still in their infancy, and are

often intertwined with aerosol optical property assumptions.

The object of this study is the retrieval of aerosol properties when they are suspended

above water phase boundary layer clouds. Aerosols above clouds (henceforth abbreviated

as AAC) are a potentially important component of positive DCF, since absorbing AAC can
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significantly reduce a high underlying cloud albedo and therefore alter forcing (Haywood

et al. [1997]). However, reliable estimates of the global prevalence and anthropogenic

component of this type of forcing are limited by a lack of appropriate observations, espe-

cially since DCF is strongly dependent on aerosol optical properties. Several approaches

have been developed recently to observe AAC, but they are limited in their ability to dis-

tinguish aerosol types because of the significant assumptions required by their retrieval

algorithms. Chand et al. [2008] used the active observations of the Cloud-Aerosol Lidar

and Infrared Pathfinder Satellite Observations (CALIPSO) instrument to determine AAC

optical depth at two wavelengths. The ratio of the optical depth spectral pair suggests the

aerosol particle size. This method is therefore somewhat limited in its ability to determine

DCF from AAC, although these type of data show promise in their potential for combined

retrievals with passive remote sensing data. Another method uses passive spectrometer

observations at ultra-violet wavelengths from instruments such as the Scanning Imaging

Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). De Graaf et al.

[2007] fit simulations of biomass burning (smoke) AAC to observations from the SCIA-

MACHY instrument to determine the aerosol total and absorbing optical thickness. An

alternate technique, which we apply here, is to use multi-angle, multi-spectral, passive

observations of polarized reflectance to simultaneously determine cloud and AAC optical

properties. Waquet et al. [2009c] demonstrated this technique using data from the Moder-

ate Resolution Imaging Spectroradiometer (MODIS) and the Polarization and Anisotropy

of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARA-

SOL) instruments. Both instruments were a part of the so called ’A-train’ polar orbit until

recently (January, 2010), when the PARASOL instrument was moved to another orbit with

the consumption of the fuel it needed to safely maintain its position. Waquet et al. [2009c]

combined MODIS retrievals of cloud top height with PARASOL polarized observations at

a variety of scattering angles to determine the aerosol optical thickness of biomass burning

AAC in the South Atlantic Ocean. This required assumptions about the aerosol size and

refractive index, since a single PARASOL band (at 0.865µm) and a single scattering model
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were used. PARASOL also has a somewhat coarse angular resolution, which means ob-

servations over a large area must be collected in order to observe the cloud bow (which is

similar to a rainbow, but is due to scattering from cloud, and not rain, droplets) with enough

angular sampling to accurately constrain cloud optical properties. Nevertheless, we believe

this approach has potential for the Aerosol Polarimetery Sensor (APS), which will have

greater angular resolution and more available spectral bands than PARASOL.

The Aerosol Polarimetery Sensor (APS) is a scanning polarimeter to be launched on

the upcoming NASA Glory mission (Mishchenko et al. [2007a]). APS is intended to re-

trieve aerosol and cloud optical properties to a high degree of accuracy. It will do so by

gathering a large amount of information in each scene: solar reflected linear polarization

at about 250 viewing angles in nine channels at visible and near infra-red wavelengths.

Cloud and aerosol properties will be retrieved by matching a doubling and adding radia-

tive transfer model (Hansen and Travis [1974]) to observations. An airborne prototype of

APS, the Research Scanning Polarimeter (RSP), was developed to test APS observational

capabilities (Cairns et al. [1997b], Cairns [2003]). APS and RSP have very similar char-

acteristics, where the latter has fewer view zenith angles (152) and slightly different center

wavelengths for some bands. The RSP has flown on a variety of aircraft in many field

campaigns. Field campaign data have been used to validate the ability of RSP/APS type

instruments to observe aerosols over the ocean (Chowdhary et al. [2001], Chowdhary et al.

[2002], Chowdhary et al. [2005a]), aerosols over land (Elias et al. [2004], Waquet et al.

[2009a]), cloud optical properties (Chowdhary et al. [2005b]), surface reflectance proper-

ties (Knobelspiesse et al. [2008], Litvinov et al. [2010]), and of extremely optically thick

plumes where the surface is obscured (Knobelspiesse et al. [2010]).

In the spring of 2006, the RSP participated in a large field campaign called Megacity

Initiative: Local and Global Research Observations (MILAGRO). The goal of MILAGRO

was to examine the behavior, transport, and evolution of emissions from the Mexico City

Metropolitan Area (MCMA). More than 450 scientists from 150 institutions participated,

involving instrumentation onboard seven aircraft, multiple ground sites, and the coordi-
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nated use of atmospheric models and orbital observations (Molina et al. [2010]). NASA’s

participation in MILAGRO was called the Intercontinental Chemical Transport Experiment

- B (INTEX-B), for which the RSP was deployed on the Sky Research, Inc., Jetstream-31

(J-31) aircraft. The J-31 was based in Veracruz, Mexico for three weeks in February and

March, and performed a total of thirteen successful research flights. In addition to the RSP,

several other instruments were part of the J-31 payload. This included the Ames Airborne

Tracking Sunphotometer (AATS-14) (Redemann et al. [2009], Livingston et al. [2009]),

the Solar Spectral Flux Radiometer (SSFR) (Bergstrom et al. [2010]), the Cloud Absorp-

tion Radiometer (CAR) (Gatebe et al. [2009]) and a Position and Orientation System (POS)

and various meteorological sensors.

Aerosols encountered during MILAGRO were a complicated mix including urban/industrial

particles from Mexico City (Doran et al. [2006], Lewandowski et al. [2010] Marley et al.

[2009], Paredes-Miranda et al. [2009], Rogers et al. [2009] and others referenced in Molina

et al. [2010]), smoke from local agricultural fires, and even volcanic sulfates (Grutter et al.

[2008], de Foy et al. [2009]). In the first two weeks of March, 2006, transport from the

MCMA was weak but generally to the east, allowing aerosols to mix and age before they

were transported over the Gulf of Mexico. On the morning of March 13th, a layer of low

altitude (probably marine stratocumulus) clouds formed over the Gulf coast of Mexico be-

tween the cities of Veracruz and Tamiahua (approximately 96.75◦W and 20.25◦N). The

cloud slowly dissipated throughout the day, but was overflown by the J-31 aircraft, which

later descended to the surface in a recently cloud free region. Observations by the SSFR

and AATS-14 instruments on the J-31, along with aerosol transport model simulations, sug-

gest that a layer of mixed aerosols were lofted above the cloud. This is therefore an ideal

test scene for the ability of sensors such as RSP and APS to retrieve optical properties of

AAC.

In the next section of this paper (4.2), we describe our methodology for the retrieval

of AAC optical properties. Next (section 4.3), we perform a short sensitivity study to help

us construct an appropriate optimization strategy for AAC scenes. We then examine the
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retrieval results, and compare them with observations from other instruments on that day

(section 4.4). We also investigate the optimization sensitivity to forward model assump-

tions. We then discuss the implications of our retrieval and sensitivity studies on the ability

of RSP and APS to resolve AAC optical properties in the context of climate model require-

ments (section 4.5), followed by a brief conclusion.

4.2 Method

One benefit of multi-angle polarized measurements is that the various atmospheric compo-

nents in a scene modify different angular portions of the observation. For our scene, where

aerosols overlay a warm phase cloud, the cloud water droplet size distribution determines

the angular location of the cloud bow (which typically exists at scattering angles some-

where around 142◦) and the magnitude of secondary bows (Breon and Goloub [1998]).

Aerosol properties such as optical depth, size distribution, and refractive index dominate

the signal at side scattering angles less than 120◦ (Goloub et al. [2000]). Rayleigh scatter-

ing also contributes at these angles, which means multi-angle polarization observations can

be used to determine cloud top heights in the absence of aerosols (Goloub et al. [1994]).

When aerosols are present, retrieval of their optical properties requires external information

about the cloud top height. Figure 4.1 illustrates the available information in a synthetic

AAC scene. This is expressed by RQ, which is defined below in equation 4.1. Note how the

angular location of the cloud bow at high scattering angles changes with cloud droplet size

distribution. Cloud top height has an impact at smaller scattering angles and the shorter

wavelength, while AAC modify the magnitude of the cloud bow peak and alter the polar-

ized reflectance at scattering angles less than 120◦ for all wavelengths.

In this paper, we test the capability of RSP to retrieve AAC optical properties. To do

this, we start by identifying the cloud and aerosol vertical distribution using observations

from other instruments on the J-31 aircraft. These are used to determine layer heights in a

plane parallel radiative transfer model, which we iteratively modify to match to our obser-
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vations using the Levenberg-Marquardt technique. The aerosol and cloud optical properties

that create the best match are the ’retrieved’ values. Initial optical properties must be close

to the retrieved solution and therefore selected with care. We find cloud initial values by

matching observations of the cloud bow angular location and width to single scattering sim-

ulations (scattering phase functions computed with Mie theory). Aerosol initial values were

selected from the ”Urban-industrial and mixed; Mexico City” class described in Dubovik

et al. [2002]. This climatology was derived from a year of ground based measurements by

the Aerosol Robotic Network (AERONET). The aerosol optical depth initial value comes

from observations by the AATS-14 instrument during a spiral to the surface in a cloud free

region near our scene.

The RSP observes the first three components of the Stokes polarization vector (I , Q and

U ), meaning it is sensitive to both linearly polarized and total radiance (Hansen and Travis

[1974]). For remote sensing, it is often useful to express the polarization components of the

Stokes vector in terms of reflectance. This takes the exo-atmospheric radiance into account,

and is calculated:

RI = Iπr2
o

Fo cos θs

RQ = Qπr2
o

Fo cos θs

RU = Uπr2
o

Fo cos θs

(4.1)

where Fo is the annual average exo-atmospheric irradiance (W/m2), ro is the solar distance

in AU (thus compensating for solar distance deviation from average throughout the year),

and θs is the solar zenith angle. The RSP instrument has a high (0.2%) absolute accuracy

for RQ and RU relative to RI , as the same detectors are used to measure intensity and linear

polarization, and because calibration of their relative gain is performed with each scan. RU

typically becomes very small when Q and U are defined with respect to the scattering

plane (containing the solar illumination and observation vectors), so we subsequently use

RQ defined in this plane as a proxy for total linear polarization. RU is only used to help
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correct for errors in aircraft geometry.

Our radiative transfer model uses Mie theory to compute the polarized phase functions

(single scattering) for various types of aerosols or cloud droplets, and Rayleigh scattering

for gases (for a historical review of Mie theory, see Mishchenko and Travis [2008]). This

means we require a measure of cloud droplet size distribution, aerosol size distribution

(which is typically bimodal) and the complex aerosol refractive index (m = )(m)+,(m)),

and that we assume the aerosols scatter like spheres. We express size distribution as an

effective radius, re, and variance, ve, where the former has units of microns and the latter is

unitless (Hansen and Travis [1974]). The size distribution of aerosols is typically bimodal,

so we use the subscripts f and c to refer to fine and coarse mode aerosols. The former is

usually the product of a chemical reaction, such as sulfate photo-oxidation or the production

of biomass burning aerosols, and the latter is due to physical processes such as the creation

of sea salt or dust aerosols. Cloud size parameters are denoted with the subscript cl. We

use the lognormal distribution for aerosols and the gamma distribution for cloud droplets

(equations 2.60 and 2.56 in Hansen and Travis [1974]). The complex refractive index,

m, is set independently for each mode. In this work we assume the real part of m is

spectrally independent, while the imaginary component of the fine mode is specified with

two parameters (see section 4.2.4).

Once the single scattering properties for an aerosol or cloud droplet have been deter-

mined, multiple scattering is computed for the full atmosphere to create the polarized re-

flectance at the observation altitude. We use the Doubling and Adding technique (Hansen

and Travis [1974], De Haan et al. [1987]), which assumes plane parallel layers of clouds

and aerosols. The altitude of these layers are determined during the J-31 atmospheric

profile as described in section 4.2.2 and they are held constant in the optimization. The

optical depth, τ , of each layer is also required. As noted above, initial aerosol optical

depth values are derived from the AATS-14. Cloud optical depth is set arbitrarily large

(τcl(0.555µm) = 10.0) to saturate the signal, since polarized reflectance is only sensitive

to the first few units of cloud optical depth. Because of this, the surface is obscured and we
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Table 4.1: Retrieved aerosol parameters and the a priori values used in optimization. Pa-
rameters listed in italics are optimized during the retrieval, while all others are kept con-
stant. †: Refractive Index values have no spectral dependence in the initial values, although
the spectral dependence of the fine mode aerosol imaginary component is allowed to vary
as described in Section 4.2.4.

Parameter Symbol Initial value

Fine mode aerosols
Optical depth, 0.555µm τf (0.555) 0.12
Real refractive index † )(mf ) 1.47
Imaginary ref. index, 0.555µm† ,(mf ) 0.014
Imaginary refractive index, p† ,(mf,p) 0.007
Imaginary refractive index, q† ,(mf,q) 0.007
Effective radius, [µm] re,f 0.20
Effective variance ve,f 0.20
Coarse mode aerosols
Optical depth, 0.555µm τc(0.555) 0.04
Real refractive index † )(mc) 1.47
Imaginary refractive index † kc 0.014
Effective radius [µm] re,c 7.67
Effective variance ve,c 0.49
Cloud droplets
Optical depth, 0.555µm τcl(0.555) 10.0
Effective radius [µm] re,cl 6.25
Effective variance ve,cl 0.075

assume its reflectance is negligible.

A complete list of the model values is presented in table 4.1. Italicized parameters are

allowed to vary during optimization and are thus retrieved, while other parameters are fixed

and considered part of the radiative transfer model.

4.2.1 AAC scene

On March 13th, 2006, the J-31 aircraft, containing the RSP and a variety of other instru-

ments, departed from the Veracruz airport. The airplane flew northwest along the Gulf of

Mexico coast and above a marine stratocumulus cloud. The cloud was in the process of dis-
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sipating, and it had a larger geographical extent earlier in the day (Bergstrom et al. [2010]).

Following the cloud overflight, the J-31 descended to the surface in a recently cloud free re-

gion. Figure 4.2 is a map of this scene, the descending spiral, and the surrounding area. We

used observations that were made in that profile to constrain cloud and aerosol layer heights

in our scene, on the assumption that the atmospheric vertical profile had not changed dra-

matically in the 125km distance between the observation location and descending spiral.

Figure 4.3 is the temperature profile and vertical change in aerosol optical depth from this

spiral. The temperature profile was used to determine the cloud top height (480m) for our

radiative transfer model, as shown in blue in figure 4.3. Change in aerosol optical depth

(equivalent to the aerosol extinction coefficient), from the AATS-14 instrument, was used

to constrain the AAC height (550m to 750m), shown in grey. Table 4.2 lists the geometry

and other specifics associated with this scene and the downward spiral. A full description

of this and other J-31 flights during MILAGRO can be found in Molina et al. [2010].

4.2.2 Aerosol sources

The AAC we encountered in our scene were a complicated mixture with a variety of

sources. Wind conditions on the 13th of March were light and variable, preceded by

southwesterly winds associated with a trough over the western portion of the USA. This

portion of the MILAGRO field campaign was characterized by low humidity and few cir-

rus clouds, and there were probable interactions between MCMA emissions and biomass

burning smoke (Fast et al. [2007]). Aerosols from a variety of sources were found dur-

ing MILAGRO, including sulfates of both industrial and volcanic origin (de Foy et al.

[2009], Grutter et al. [2008]), and organic carbon. Secondary organic carbon was more

dominant than primary organic carbon, and was the result of both urban and (generally

anthropogenic) biomass burning activities (Doran et al. [2006], Crounse et al. [2009], Yu

et al. [2009], Paredes-Miranda et al. [2009]). The MCMA is in a high valley (2200m+

above sea level), so it is feasible for anthropogenic aerosols to be lofted above low level

marine stratocumulus clouds on the coast.
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Table 4.2: Geometry and other parameters associated with our AAC scene, and the subse-
quent downward spiral. Aerosol optical depths are from the AATS instrument

Parameter Value

AAC scene
Starting Time 16:05 UTC
J-31 altitude 5380m
Latitude 20.15◦ N
Longitude 96.68◦ W
Solar Zenith Angle 44◦
Relative Azimuth Angle 20◦
Number of averaged scans 22
Downward Spiral
Starting Time 16:22 UTC
J-31 altitude 5360 to 51m
Latitude 21.06◦ N
Longitude 96.95◦ W
Cloud top 480m
Aerosol layer bottom 550m
Aerosol layer top 750m
τ(0.519µm) above 550m 0.165
τ(0.604µm) above 550m 0.130
τ(2.139µm) above 550m 0.040

This leads us to believe that the AAC aerosols in our scene are probably anthropogenic

and that the fine size mode is the dominant contributor to scattering and absorption. To fur-

ther investigate the aerosol sources, we used the FLEXPART Lagrangian particle dispersion

model (Stohl et al. [2005]) to determine the sensitivity of our scene to emission in other

regions. Figure 4.4 is the footprint emission sensitivity obtained from FLEXPART driven

by European Centre for Medium Range Weather Forecasts (ECMWF) meteorological data.

Values of high emission sensitivity can be found both over the MCMA and biomass burn-

ing areas in the vicinity of Veracruz. However, results are somewhat different when the

meteorology is driven by an alternate model, the Global Forecast System (GFS) from the

National Center for Environmental Prediction (NCEP). FLEXPART driven by GFS shows
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an increased influence of Veracruz area smoke at the expense of MCMA pollution. This

disparity is probably due to the weak and variable winds at that time, and indicates that the

aerosols have had the opportunity to mix, accumulate, and age, with the exact distribution

of contributing sources being somewhat more uncertain than for other cases.

4.2.3 Determination of initial cloud size distribution

Prior to performing our retrieval, we made an initial estimate of the cloud size distribution

using a Look Up Table (LUT) of cloud droplet single scattering properties. Goloub, in his

paper describing cloud property retrieval from the Polarization and Directionality of Earth

Reflectances (POLDER) instrument (Goloub et al. [2000]), found that polarization of cloud

reflectances is insensitive to multiple scattering. As cloud optical thickness becomes greater

than 2, RQ in the single scattering approximation becomes

RQ(θs, θv, ξ) =
1

4(cosθs + cosθv)
Q(ξ, re,cl, ve,cl) (4.2)

where θs is the solar zenith angle, θv is the view zenith angle and Q is the Stokes vector

component of the single scattering phase function. ξ is the scattering angle, defined with

respect to the incident illumination vector, and re,cl, ve,cl are the cloud effective radius and

variance.

At large viewing angles, where RQ is dominated by the cloud signal (see figure 4.1),

we can identify the cloud size distribution independently from cloud optical thickness or

multiple scattering effects. RQ is sensitive to cloud effective radius at scattering angles

larger than 130◦, and effective radius at angles larger than 145◦ (Waquet et al. [2009c]).

Our initial estimate of cloud size distribution is determined by matching RQ to a LUT

of Q(ξ, re,cl, ve,cl) for a variety of size distributions. We used scattering angles between

135◦ and 162◦ (which was the largest scattering angle available in our scene). The LUT

contained effective radii between 5 and 20 µm at 0.25 intervals, and effective variances

between 0.01 and 0.25. Aerosol and molecular effects above the cloud are expressed in

a manner that does not change rapidly with scattering angle (unlike the sharp cloud bow
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features), so we used a Fourier domain high pass filter (Gonzalez and Woods [1992]) to

remove this low frequency signal prior to matching RQ to the LUT. To account for the

possibility that absorbing AAC dampen the cloud signal, we allow both re,cl and ve,cl to

vary during optimization.

4.2.4 Optimization

Aerosol and cloud optical properties are retrieved by comparing a radiative transfer simula-

tion of our scene to RSP observations, and tuning the model parameters until the best match

is found. We use the Levenberg-Marquardt optimization technique as described in Moré

[1977] and Markwardt [2009], and implemented for the RSP in Knobelspiesse et al. [2010].

This means the retrieved parameters are not real numbers but regions of state space that are

associated with the scene considering observational uncertainty. Waquet et al. [2009a] also

used a similar approach with RSP data for aerosol retrievals over land.

We used the software developed in Knobelspiesse et al. [2010] for this study with slight

modifications. First, we increased the numerical accuracy of the radiative transfer model.

While computationally more expensive, this is required to properly simulate cloud droplets,

which have much stronger forward scattering and produce more dramatic features than

aerosols (such as cloud bows). We also modified the software so that the aerosol optical

depth of a layer is a directly retrieved parameter. Previously, the total quantity of aerosols

in a layer was determined by the particle number concentration, and this was the parameter

that was tuned during optimization. Validation, however, is usually performed by compar-

isons of optical depth, since this is a common observation made by instruments such as sun

photometers. While optical depth can of course be computed using the number concentra-

tion (and aerosol extinction cross section, which depends on size and refractive index), we

switched to directly optimizing this parameter so that error computation is simpler. We also

noticed that the optimization itself appears to require fewer iterations and is better behaved,

although this observation is limited to this AAC scene.

We also modified the software in Knobelspiesse et al. [2010] to allow the imaginary
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component of the refractive index to have a spectral dependence. Rather than using the

single value for each size mode, we now use a pair of parameters, ,(mp) and ,(mq):

,(m(λ)) = ,(mp) + ,(mq)(λ + 0.445)−10 (4.3)

where λ is the wavelength in microns. This spectral dependence function is intended to

allow for the increase in absorption at shorter wavelengths due to ”brown carbon” (BrC,

absorbing organic carbon aerosols). This was observed by the SSFR instrument on the

same flight as our AAC scene (Bergstrom et al. [2010]), which is our primary motivation

for this change.

The choice of this form of specular dependence is unfortunately somewhat arbitrary,

as direct observations of the imaginary refractive index of aerosols in their entirety are

difficult and quite limited. Evidence of absorption in observations of the aerosol optical

depth, on the other hand, are much more common. The absorption optical depth, τa, which

is the optical depth due to absorption but not scattering, is generally characterized with the

equation

τa(λ) = τa,o(λ/λo)
−α (4.4)

where λo is a reference wavelength and τa,o is the absorption aerosol optical depth at that

wavelength. α is the Ångström Exponent, which should be equal to 1.0 for very small par-

ticles with spectrally invariant refractive indices (van de Hulst [1981] and Bond [2001]).

Larger Ångström Exponent values have been found in some biomass burning (smoke)

aerosol plumes, such as in Lewis et al. [2008], indicating an increase in the imaginary

refractive index (and thus absorption) at shorter wavelengths. Authors such as Hoffer et al.

[2006] and Dinar et al. [2008] have found imaginary refractive indices that increase with de-

creasing wavelength for Humic-Like Substances (HULIS), which are likely components of

BrC, but direct observations of entire aerosol particles are limited. Others (Chen and Bond

[2010], Kirchstetter et al. [2004] and references therein) have found increasing aerosol

absorption coefficients with shorter wavelength. While this is evidence of an increase in
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shortwave imaginary refractive index, the absorption coefficient is also dependent on par-

ticle size and real refractive index.

For small particles, the imaginary refractive index is proportional to wavelength and

absorption coefficient (,(m(λ)) ∝ λa) (Sun et al. [2007]), which we use to connect our

model for imaginary refractive index in equation 4.3 to observations. The,(mp) parameter

indicates the quantity of spectrally independent absorption, while ,(mq) expresses the

quantity of spectrally dependent absorption. A large negative exponent has been selected

so that variations in ,(mp) and ,(mq) have very different impacts, which allows their

simultaneous retrieval during optimization, since they are more orthogonal. The exponent

value of −10 was chosen from the upper limit to the absorption Ångström Exponent found

by Chen and Bond [2010]. Spectral dependence is also shifted so that k(0.555) = ,(mp)+

,(mq) and ,(m(λ)) converges to ,(mp) to as wavelength increases.

Our optimization methods provide the retrieval error for each model parameter (see

section 4.3). Since it is not directly parameterized, the uncertainty in k must be derived

from the uncertainties in ,(mp) and ,(mq). Assuming that correlation between ,(mp)

and ,(mq) is minimal, σk is determined by the retrieval error for those parameters.

σ2
k(λ) = σ2

k,p + σ2
k,q(λ + 0.445)−20 (4.5)

4.3 Simulated aerosol above cloud

To help us design an appropriate optimization strategy, we first assessed the information

content available in an AAC scene. We did this by simulating a climatologically defined

aerosol at a variety of optical depths suspended above a marine stratocumulus cloud. Other

than optical depth, aerosol optical properties were chosen to match the ”Mexico City Ur-

ban/Industrial” class described in Dubovik et al. [2002] and used as the initial value during

optimization.

For each simulation, we numerically estimated the Jacobian matrix, J, which expresses
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the sensitivity of the forward model to change in each parameter,

Jij(x) =
∂Fi(x)

∂xj
(4.6)

where the partial derivative of forward model, F, for the simulated set of parameters, x,

is computed for each observation (i) and each parameter (j). The partial derivative was

estimated numerically by perturbing the jth element of x (which we denote as x′) and

recalculating the forward model, F.

Jij(x) ≈ Fi(x′)− Fi(x)

x′j − xj
(4.7)

While the Jacobian is a useful metric to identify the relative importance of different param-

eters in measurement space, we are interested in parameter sensitivity. This is expressed

with the retrieval error covariance matrix.

Cx = (JT CT J)−1 (4.8)

This requires the measurement error covariance matrix, CT , which is specific to the RSP

and accounts for measurement uncertainty due to errors in calibration, and observation

geometry. It is computed as in equation 3 of Knobelspiesse et al. [2010]. The square root

of the diagonal elements of Cx are the standard deviations of the errors for each parameter

in x, provided that CT is accurate and the forward model is linear over the perturbation

range used to numerically calculate J (Hasekamp and Landgraf [2007]).

We simulated a scene very similar to the initial values we selected for optimization,

with the exception of optical depth. Aerosol and cloud optical properties that were used

for the simulation are listed in table 4.1, while the cloud and aerosol vertical distribution

is described in table 4.2. Unlike our RSP scene, however, we selected a view zenith angle

of 45◦ and relative azimuth angle of 45◦. This geometry was chosen to generalize the

results for the APS, which will typically make observations farther from the solar principal

plane (where φ = 0◦) than the RSP did in this scene. Observations in the solar principal

plane contain more information than those at other relative azimuth angles because a larger
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range of scattering angles are measured. For this reason, we would expect lower errors

for the RSP viewing geometry, although errors from brief simulations we performed at

observational relative azimuth angles were nearly identical.

We performed two different sets of simulations. The first set simulated an optimization

that used RQ in seven RSP bands (centered at 0.410, 0.470, 0.555, 0.670, 0.865, 1.590 and

2.250µm) at half degree intervals in the view zenith angle range of ±60◦ from nadir. At

this geometry, the scattering angle range is from 85◦ to 150◦ and includes both side scatter-

ing angles (where aerosol properties dominate the signal) and the cloud bow (where cloud

properties dominate the signal). The second simulation also used RQ at the wavelengths

described above, but view angles restricted to 20◦ to 60◦ in the forward direction. The scat-

tering angles that correspond with this are between 85◦ and 120◦, excluding the cloud bow.

This is similar to the scattering angle range used to retrieve AAC properties in Waquet et al.

[2009c], who was limited in his ability to determine cloud properties (due to the coarser

angular resolution of POLDER) and performed an optimization using only observations

where aerosol properties dominate.

Simulated retrieval errors are shown in figure 4.5. Aerosol remote sensing accuracy re-

quirements for climate models, as assessed by Mishchenko et al. [2004], are also presented.

These requirements were not determined for AAC, but for retrievals of aerosols over land

(without the presence of clouds) or clouds without aerosols above. We include them in fig-

ure 4.5 to compare the potential of AAC retrievals with the standard retrievals by the APS

instrument for which these accuracy requirements were determined. For the full angular

range simulation, these accuracy requirements are indeed met for aerosol optical depth, fine

mode aerosol size, and cloud droplet size. Real refractive index and single scattering albedo

requirements are not met, although errors decrease and nearly approach the requirements

as aerosol optical depth increases. Errors for the simulation with fewer viewing angles are

clearly higher. Aerosol optical depth accuracy requirements are no longer met, and errors

for fine mode effective variance are too high at very low optical depths. Simulations also

show sensitivity to cloud droplet size and effective variance within accuracy requirements
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for aerosol optical depths less than one. This is surprising considering that this simulation

did not use observations of the cloud bow, where cloud properties should be dominant.

These results, however, do not indicate the degree of correlation between different param-

eters in the retrieval. For the simulation with a total optical depth of τ(0.555) = 0.12, the

cloud effective radius was strongly correlated with the fine mode optical depth and fine

mode effective variance (see appendix 4.7). Cloud effective variance was strongly corre-

lated with the optical depth of both fine and coarse aerosols. These strong correlations do

not exist for the equivalent retrieval that used the full angular range of observations.

These simulations suggest several strategies for successful optimization. The most ob-

vious is that optimizations should utilize observations both of the cloud bow and side scat-

tering angles. Cloud size parameters should be retrieved during optimization, since their

assessed errors are low and those parameters are not significantly correlated with others

(with one exception, see appendix 4.7). Furthermore, fine and coarse mode aerosol optical

depth and fine mode size parameters can all be retrieved accurately. The real refractive

index and absorption, however, are not retrieved accurately. Furthermore, those parame-

ters have a high degree of correlation between themselves and with other parameters (see

appendix 4.7). An ideal situation would be to have an accurate external measure of the

aerosol complex refractive index that can be specified during optimization. Obviously, such

measurements typically do not exist, so we are forced to consider retrieving some of the

complex refractive index parameters, even if their retrieval error is larger than requirements

for typical aerosol values. We are most interested in AAC absorption, since absorption is an

important factor in the overall radiative forcing of AAC. The imaginary component of re-

fractive index, however, is highly correlated with the optical depth of coarse mode aerosols.

For our optimization, we decided to fix the real refractive index at the climatological value

for Mexico City aerosols as contained in Dubovik et al. [2002], while allowing both param-

eters describing the imaginary refractive index (see section 4.2.4) to vary. Since the latter

are correlated with coarse mode optical depth, we fixed that parameter to the optical depth

observed by the AATS sun photometer at long wavelengths (where the coarse mode should
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contribute the most to overall extinction). Free parameters in our retrieval are therefore

the aerosol fine mode optical depth, both parameters describing the imaginary component

of fine mode refractive index, fine mode effective radius and variance, and cloud droplet

effective radius and variance.

4.4 Results

4.4.1 Cloud properties

As described in section 4.2.3, initial values for cloud droplet size were determined by

matching a look up table of cloud droplet single scattering properties to observations. Be-

cause RSP observations also contain the effects of Rayleigh scattering and aerosols above

the cloud, the cloud parameters determined with this method were allowed to vary in the

next step, optimization. Here, aerosol and Rayleigh scattering effects were minimized by

removing the low angular frequency trend before comparing the observation to the look up

table. The best match was found for a cloud whose droplets have an effective radius of

re,cl = 6.25µm and effective variance of ve,cl = 0.075. Figure 4.6 shows this match (before

low frequency trends are removed) for three wavelengths. While there are significant off-

sets between the RSP observation and cloud model, the angular location of the cloud bow

in the data are well represented with the model.

4.4.2 Aerosol and cloud simultaneous retrieval

Optimization was performed using the data, methodology and initial values described

above to retrieve seven aerosol and cloud parameters. Eleven iterations of the Levenberg-

Marquardt method were required to converge to a solution. Figure 4.7 shows the radiative

transfer model match to the observations, while table 4.3 is the aerosol and cloud parame-

ters that were retrieved from the model. Comparisons between these results and observa-

tions made by other instruments are presented in figure 4.8.
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The optimized radiative transfer model appears to match best at forward scattering an-

gles, where aerosol properties dominate. This is somewhat understandable in that the mea-

surement error (as expressed in the error covariance matrix, CT ) is smallest for these view-

ing angles. Measurement error is largest for cloud bow view zenith angles (between −20◦

and 0◦) because of uncertainties in aircraft geometry that have the largest impact on features

that change rapidly with angle. Perhaps as a result, model results are worst here, and under-

estimate the polarization in the cloud bow in all channels. However, we also found that few

combinations of aerosol or cloud parameters could create such strong polarization in the

cloud bow, indicating that our cloud model may be too simplistic. Regardless, aerosol and

cloud parameter values have errors that are similar to those of the simulation in section 4.3

for comparable optical depths. Aerosol optical depth and size parameters have low errors

that meet the accuracy requirements of Mishchenko et al. [2004]. There are no accuracy

requirements for the aerosol imaginary refractive index, but the related single scattering

albedo has an uncertainty so large as to render that parameter nearly useless. This is not

much of a surprise, however, since the predicted error in single scattering albedo in the

sensitivity test is comparable. The sensitivity test also shows that this error will decrease

with increasing aerosol optical thickness, so that optical thicknesses above τ(0.555) = 0.8

have single scattering albedo errors nearly within accuracy requirements. In other words,

absorption errors decrease for aerosol loads that will have the most significant radiative

forcing impact.

The retrieved AAC properties show a somewhat thin (about half the climatological me-

dian optical thickness) layer of aerosols that have a fine mode effective radius very similar

to the climatology of Dubovik et al. [2002]. This is reasonable, however, because the ob-

served altitudes represent only a portion of the atmospheric column and do not include,

for example, boundary layer aerosols. The width of the fine mode size distribution is quite

small, which may be explained by the hypothesis in Bergstrom et al. [2010] that these

aerosols have been cloud processed (although it should be noted that aerosol size distribu-

tion was not directly observed in that paper). The cloud droplet effective radius is close to,
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Table 4.3: Retrieved aerosol and cloud parameters. †: These parameters are derived from
other parameters, not directly retrieved. Errors in bold are larger than accuracy guidelines
from Mishchenko et al. [2004] (note that guidelines were not provided in this publication
for imaginary refractive index, and were not intended for AAC retrievals).

Symbol Unit Retrieval Error Simulation Error

τf (0.555) n/a 0.104 0.016 0.009
τ(0.555)† n/a 0.144 0.016 0.009
,(mf,p) n/a 0.000 0.062 0.064
,(mf,q) n/a 0.003 0.036 0.015
,(mf )(0.532)† n/a 0.004 0.077 0.063
re,f µm 0.143 0.007 0.029
ve,f n/a 0.057 0.036 0.106
re,cl µm 6.82 0.187 0.061
ve,cl n/a 0.028 0.009 0.012
"(0.532)† n/a 0.868 0.450 0.306

but slightly smaller than, the climatology for marine clouds in Miles et al. [2000]. Com-

pared to the initial values, the cloud effective radius increased slightly, while the effective

variance decreased. This is somewhat understandable in light of the method used to de-

termine the cloud initial size parameters. Aerosols and Rayleigh scattering above a cloud

would generally be expected to attenuate the strong polarized signal emanating from the

cloud bow. This would act to decrease the polarization strength of the cloud bow, and

dampen the secondary oscillations associated with narrow size distributions. Once incor-

porated into a full multiple scattering radiative transfer model, the effects of droplet size on

the observations are more accurately calculated, providing a better estimate of the droplet

size distribution.

One interesting result from this optimization is that it converged to a solution where

the ,(mf,q) parameter is dominant, while ,(mf,p) became nearly zero. Initial values for

both these parameters were an equal split of ,(mf ) from the Dubovik et al. [2002] Mexico

City climatology. Errors for both ,(mf,p) and ,(mf,q) are large, but this indicates a likely

spectral dependence in the imaginary refractive index. This was also found by Bergstrom
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et al. [2010] in a nearby scene. We also tested optimizations that had spectrally flat initial

conditions (,(mf,p) = 0.014 and ,(mf,q) = 0.0), but they converged to what we found

here, only with many more Levenberg-Marquardt iterations.

4.4.3 Comparison with other observations

Observations of the aerosol plume were also made by other instruments on the J-31 aircraft.

The Ames Aerosol Tracking Sunphotometer (AATS) made observations of the spectral

aerosol optical depth in a cloud free region about 125km northwest of our scene. Aerosol

absorption was also observed in this area by the Solar Spectral Flux Radiometer (SSFR),

and published in Bergstrom et al. [2010] (see figure 4.2). As described in section 4.2.2,

atmospheric transport was weak prior to our observation, so we assume the aerosols at this

location are similar to those in our AAC scene.

The aerosol optical thickness we retrieved agrees very well with AATS observations

from an altitude of 480m (which was the cloud top height in our AAC scene). To some

extent, this is by design, since the longest wavelength AATS optical thickness values were

used to constrain the AAC coarse mode aerosol optical thickness during optimization. Even

so, at wavelengths less than 0.8µm, the majority of total aerosol optical thickness is deter-

mined by the fine mode, and AATS measurements at these wavelengths agree well within

retrieval uncertainties.

The single scattering albedo that we retrieved has a very large uncertainty. However,

comparisons with SSFR observations show some degree of similarity, at least for the shorter

wavelengths of the spectrum. It is encouraging that agreement is better at these wavelengths

since this is where the fine aerosol mode dominates extinction, and the imaginary refractive

index of the fine mode was allowed to vary during optimization. Differences are greatest for

the 0.7µm to 1.1µm wavelength range. The coarse aerosol mode contributes more to the

total extinction at these wavelengths, but the imaginary refractive index for the coarse mode

was held fixed during optimization. This may indicate that the coarse mode imaginary

refractive index was not properly selected. Given the overall imaginary refractive index
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Table 4.4: This table contains the parameter sensitivity to changes in the forward radiative
transfer model. This sensitivity is expressed as a percentage of the retrieved parameter
value (100 × e/x). All of the parameter errors from model uncertainties are within the
accuracy requirements of Mishchenko et al. [2004], and with one exception (the pitch angle
uncertainty impact on the cloud effective radius, noted in bold), they are all less than the
individual retrieval uncertainties.

τf (0.555) ,(mf ) re,f ve,f re,cl ve,cl

Aerosol layer top raised 30m 0.1% 4.5% 0.1% 0.9% 0.0% 0.0%
Cloud layer top raised 30m 0.8% 20.5% 0.4% 4.2% 0.0% 0.1%
Yaw angle changed by 0.5◦ 0.6% 153.5% 0.3% 3.7% 0.8% 1.4%
Pitch angle changed by 0.5◦ 1.0% 451.5% 1.6% 15.4% 3.9% 6.0%
)(mf ) increased by 0.02 6.9% 57.8% 2.6% 12.1% 0.0% 0.2%
τc(0.555) increased by 0.02 4.0% 1481.6% 0.8% 16.3% 0.0% 3.3%
)(mc) increased by 0.02 0.1% 12.6% 0.0% 0.0% 0.0% 1.1%
kc increased by 0.006 0.9% 9.1% 0.0% 1.6% 0.1% 1.7%
re,c increased by 0.802 0.3% 33.2% 0.0% 1.1% 0.0% 0.6%
ve,c increased by 0.093 0.2% 44.3% 0.0% 1.0% 0.1% 0.6%

uncertainty, however, no firm conclusions can be made.

4.4.4 Model uncertainty

Forward model suitability is a major issue for optimizations such as this. Because of the

finite information content available in our observations, we were required to make several

assumptions about the nature of our scene. Many of these assumptions were based on

external observations (such as the aerosol vertical distribution from AATS) or climatologies

of aerosol properties (such as the coarse mode aerosol optical properties from Dubovik

et al. [2002]). While it is difficult to quantitatively assess these assumptions without further

information, we can determine if the uncertainty in the data that went into making them has

an impact on the retrieved parameter values. To do so, we start by modifying one of the

assumptions in the forward model by its uncertainty, and recomputing with the retrieved

parameters. The difference between this (which we will denote F̂ (x)) and the forward
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model results is the model error in measurement space. We can then use the Jacobian to

project the error (e) into state space.

e = (JJT )−1J[F̂ (x)− F (x)] (4.9)

Table 4.4 contains values of e as a percentage of the retrieved parameter value for various

model assumptions.

Model uncertainties come from a variety of sources. One class of model assumptions

have to do with the physical description of the aerosol and cloud scene as plane parallel

layers in a radiative transfer model. In this paper we test the validity of the vertical lay-

ering heights. Validity of the plane parallel model approach requires a comparison with a

three dimensional radiative transfer model, which is beyond the scope of the current work

and will be a topic of future research. Another class of assumptions has to do with the

geometry of the scene. While presumably this will not be an issue for APS, the aircraft

carrying the RSP is subject to rapid attitude changes, so the measurement geometry does

have uncertainty. Finally, we also test the assumptions we make about the aerosol optical

properties we were not able to retrieve, such as the fine mode real refractive index and the

coarse mode size and refractive index.

Aerosol and cloud layer tops were perturbed by the vertical resolution of the CALIPSO

lidar (Winker et al. [2006] and Winker et al. [2003]). CALIPSO is in the ’A-Train’ orbit,

which is also the destination of the APS instrument. Operational retrievals of AAC from the

APS would likely use the cloud top height and aerosol vertical distribution from CALIPSO.

Therefore, we used 30m perturbations, which are equivalent to the vertical resolution of

CALIPSO for the lower troposphere. It is clear that e for most retrieved parameters is not

strongly affected by this level of uncertainty in the vertical distribution, although cloud

layer top is more important than the aerosol vertical distribution. The imaginary refractive

index for the fine mode does have a somewhat large degree of error. However, this error

is much smaller than the retrieval error itself, which was about twenty times larger than

the imaginary refractive index parameter value, and other model uncertainties have a much
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stronger effect on this parameter.

Proper knowledge of aircraft attitude is essential for accurate RSP retrieval. Aircraft

attitude was provided by an Applanix POS-AV, which combines Global Positioning Sys-

tem technology with an inertial monitoring unit to determine position, velocity, pitch, roll

and heading. There are of course limitations to the accuracy of such observations, and

differences between the orientation of the POS-AV and the RSP instrument. To account

for these errors, we modify our information about aircraft geometry using various features

in the observed data. For example, RU should be minimal when defined with respect to

the scattering plane for single scattering, so slight modifications to the aircraft pitch and

yaw are made until this is the case. To understand the effect of geometric error, we per-

turbed the aircraft pitch and yaw angles by 0.5◦. This choice was based on the sensitivity of

our geometry correction techniques, but is probably an overestimate. The official POS-AV

pitch accuracy is 0.03◦, while yaw accuracy is 0.1◦ (roll uncertainty is not accounted for

in this work). Table 4.4 shows that uncertainty in aircraft yaw angle is not particularly im-

portant (although ,(mf ) uncertainty is large, as it is for many other model assumptions).

Pitch angle uncertainty, however, has a significant impact on the ability to retrieve the fine

mode aerosol effective variance, cloud droplet effective variance, and especially the cloud

droplet effective radius. In fact, error in the cloud droplet effective radius is larger than the

retrieved error for that parameter. Accurate retrievals of cloud droplet radius thus require

accurate monitoring of instrument pitch angles.

As shown in section 4.3, the information available in RSP observations is not great

enough to retrieve all optical properties for both aerosol modes. We therefore were re-

quired to assume some of these properties based on prior information. In this case, we

used the fine mode real refractive index, and the coarse mode refractive index and size

distribution from the Mexico City climatology of Dubovik et al. [2002]. We used the cli-

matological uncertainty for each assumed parameter to test our retrieval sensitivity. As we

can see in table 4.4, uncertainty in the assumed fine mode real refractive index value has a

significant impact on the ability to retrieve fine mode optical depth, and a more moderate



124

impact on fine mode size distribution. Considering the impact on aerosol optical thick-

ness, the retrieval success for that parameter (see figure 4.8) indicates that the assumed

real refractive index value was also valid. Coarse mode optical thickness was determined

by longest wavelength observations by the AATS sun photometer. The assumption is that

coarse mode aerosols, because of their size, have very little optical thickness spectral vari-

ation. Fine mode aerosols, on the other hand, have a very pronounced spectral dependence,

and a nearly negligible optical thickness at long wavelengths. Optical depth observations

at long wavelengths can therefore be assumed to represent the coarse mode only, and that

value should be constant for all wavelengths. It is difficult to assess the uncertainty asso-

ciated with this assumption, but we select a value of 0.02, which is larger than the AATS

uncertainty alone. Regardless, coarse mode aerosol uncertainty has a substantial effect on

fine mode optical depth and effective variance, and a large effect on the fine mode imag-

inary refractive index. It appears that the selection of the coarse mode optical depth is

important, so this must be done with care (or this parameter must be retrieved rather than

assumed). Uncertainty in assumptions about the other coarse mode aerosol optical prop-

erties (complex refractive index and particle size distribution) have a minimal effect on

retrieved parameter values, and can therefore be confidently assumed from climatologies.

4.5 Discussion

This research is a test of the capability of scanning polarimeters to retrieve the optical

properties of aerosols lofted above clouds (AAC). The test was performed with observa-

tions from the Research Scanning Polarimeter (RSP), which is an airborne prototype of the

Aerosol Polarimetry Sensor (APS), soon to be launched as part of the NASA Glory mis-

sion. The primary strategy for retrieving aerosol and cloud optical properties from RSP and

APS is to match a multiple scattering radiative transfer model to observations by iteratively

modifying model parameters until a match is found. The Levenberg-Marquardt method is

used to perform this optimization. The software and tools that we used were developed



125

in Knobelspiesse et al. [2010], which couples a publicly available Levenberg-Marquardt

software with a Doubling and Adding type radiative transfer model.

An AAC scene observed by the RSP during the Megacity Initiative: Local and Global

Research Observations (MILAGRO) field campaign was the primary source of data for this

work. A mixture of urban industrial and agricultural biomass burning aerosols from central

Mexico were lofted above a marine stratocumulus cloud close to shore over the western

portion of the Gulf of Mexico. Several other instruments, including the Ames Airborne

Tracking Sunphotometer (AATS-14) and the Solar Spectral Flux Radiometer (SSFR) were

onboard this aircraft, and collected data that were used to either guide the AAC optimiza-

tion or validate the results.

This research had three main sections. First, we simulated the RSP/APS retrieval error

for an AAC scene with climatologically defined aerosol properties (Dubovik et al. [2002])

at a variety of optical depths. We found that the aerosol optical depth, fine mode aerosol

size distribution, and cloud droplet size distribution can all be retrieved for an AAC scene to

the accuracy required for climate modeling in Mishchenko et al. [2004]. Aerosol refractive

index simulated errors are much higher. The error in the real component of the refractive

index decreases with increasing aerosol optical depth, and approach accuracy requirements

as optical depth at 0.555µm exceeds 0.8. Aerosol single scattering albedo error (and the

imaginary part of the refractive index from which it based) also decrease with increasing

optical depth to values approaching accuracy requirements. Simulations also show that it is

preferable to retrieve aerosol properties and cloud droplet size distributions simultaneously

using all available angle observations, rather than to separate the two and retrieve cloud

droplet properties from observations of the cloud bow and aerosol optical properties from

observations at side scattering angles. We then performed an optimization for an example

AAC scene. This optimization successfully converged to a solution, where a thin layer of

aerosols overlay a marine stratocumulus cloud made up of relatively small sized droplets.

Errors for this optical depth were quite similar to the predictions using simulated data. The

retrieved aerosols appear similar to the climatology for Mexico City aerosols in Dubovik
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et al. [2002], although with a narrow size distribution range possibly associated with parti-

cle humidification or cloud processing. We found evidence of an increase in absorption for

the shortest wavelengths, which is a characteristic of Brown Carbon aerosols and was also

observed by Bergstrom et al. [2010] for the same aerosols. However, the imaginary refrac-

tive index retrieval uncertainty (which determines aerosol absorption) is extremely large.

While this was predicted with the scene simulations for aerosols with a thin optical depth,

it limits any conclusions that can be drawn from these results. Nonetheless, optical depth

and single scattering albedo results compare favorably with measurements by other instru-

ments. Finally, we assessed the importance of uncertainty in various model components.

We found that the aerosol and cloud layer height resolution as provided by the CALIPSO

instrument will be sufficient for AAC retrievals by the APS when it on orbit. Accurate

measurements of aircraft geometry, especially pitch, are important for retrievals with RSP

data (but not for APS). Finally, while the coarse mode optical depth has a strong effect on

retrieval uncertainty, assumptions about other coarse mode aerosol optical properties only

have a small effect on the fine mode properties that are being retrieved.

This work suggests that the APS instrument will be capable of retrieving the total

aerosol optical depth, fine mode size distribution, and cloud droplet size distribution for

aerosols lofted above clouds. This is true provided that the scene can be simulated as

plane layers within the APS pixel, and that the layer heights can be supplied by external

observations (such as the CALIPSO lidar). Fine mode aerosol refractive index retrievals

have a high error that decreases with increasing AAC optical depth. These errors approach

modeling requirements as optical depths approach and exceed about 0.8 at a wavelength of

0.555µm. Most AAC optical depths will probably not be that large, but it is encouraging

that the retrievals will be most sensitive to events with the strongest potential to alter radia-

tive forcing. For lower optical depths, we may need to fix refractive index values using a

climatology or external measurements. The retrieved optical depth will be sensitive to the

accuracy of that assumption. Considering this dependency, an alternate approach might be

to fix the optical depth (since observations of optical depth are much more common than
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those of refractive index), and allow refractive index parameters to vary. We did not attempt

this technique in this work, but it may be a worthwhile approach in the future, if the RSP or

APS are observing in coordination with lidars such as the High Spectral Resolution Lidar

(HSRL), which retrieve both aerosol vertical distribution and aerosol optical depth (Hair

et al. [2001], Hair et al. [2008], Rogers et al. [2009]).

4.6 Conclusions

The direct radiative effect of aerosols suspended above clouds (AAC) are a potentially

important but rarely observed phenomenon. Scanning polarimeters, such as the Aerosol

Polarimetry Sensor (APS) (due to be launched soon as part of the NASA Glory mission)

and its airborne prototype, the Research Scanning Polarimeter (RSP), have the capability

to retrieve AAC properties using nonlinear optimization methods that match a radiative

transfer model to instrument observations. In this paper, we tested the capability of such

a retrieval using RSP observations of a mixed urban and agricultural fire smoke aerosol

above a marine stratocumulus cloud in the western portion of the Gulf of Mexico. Provided

that the vertical structure of the cloud and aerosol are known, the aerosol optical depth,

cloud droplet size distribution and aerosol fine size mode size distribution can be retrieved.

Reasonable values were found for the complex refractive index of the fine aerosol size

mode, but their associated uncertainty is too large to be used for climate models. We also

performed a sensitivity study for a similar scene at a variety of AAC optical depths, and

found that uncertainties decrease as optical depth increases. If the aerosol optical depth

exceeds roughly 0.8 at a wavelength of 0.555µm, refractive index uncertainties decrease to

a degree that is almost sufficiently accurate for the needs of climate models. Once launched,

the APS will be able to provide much more information about AAC than was previously

available. However, the complex refractive index will be limited in its accuracy unless

external data can be used as a constraint or the aerosol optical depth is unusually large.
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Table 4.5: Correlation matrix for a simulated AAC scene with τf (0.555) = 0.1 and an
optimization utilizing angles within 60◦ of nadir. Elements with absolute values greater
than 0.5, indicating strong correlation, are in bold.

τf (0.555) )(mf ) ,(mf,p) ,(mf,q) re,f ve,f τc(0.555) re,cl ve,cl

τf (0.555) 1.00
)(mf ) -0.36 1.00
,(mf,p) 0.26 0.44 1.00
,(mf,q) -0.42 0.27 -0.55 1.00
re,f 0.49 -0.96 -0.35 -0.30 1.00
ve,f -0.10 0.64 0.00 0.32 -0.68 1.00
τc(0.555) -0.40 -0.45 -0.53 0.30 0.33 -0.38 1.00
re,cl 0.02 0.08 0.07 -0.01 -0.01 -0.01 -0.00 1.00
ve,cl -0.17 -0.05 -0.68 0.30 0.03 0.24 0.01 0.09 1.00

4.7 Appendix: Correlation in simulations

The analysis in section 4.3 describes the parameter sensitivity of the retrieval, but does not

express the correlations between the parameters. The off diagonal elements of Cx (equation

4.8) can be used for this purpose if they are normalized by the parameter error to create the

correlation matrix

ρij =
Cx,ij√

Cx,ii

√
Cx,jj

(4.10)

Tables 4.5 and 4.6 are the correlation matrices for the τf (0.555) = 0.1 simulations in

section 4.3.
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Table 4.6: Correlation matrix for a simulated AAC scene with τf (0.555) = 0.1 and an
optimization utilizing angles 20◦ and 60◦ forward of nadir. Elements with absolute values
greater than 0.5, indicating strong correlation, are in bold.

τf (0.555) )(mf ) ,(mf,p) ,(mf,q) re,f ve,f τc(0.555) re,cl ve,cl

τf (0.555) 1.00
)(mf ) 0.44 1.00
,(mf,p) 0.63 0.18 1.00
,(mf,q) -0.41 -0.24 -0.73 1.00
re,f 0.10 -0.82 0.06 0.12 1.00
ve,f 0.38 0.74 -0.31 0.16 -0.51 1.00
τc(0.555) -0.90 -0.64 -0.61 0.40 0.15 -0.42 1.00
re,cl -0.70 -0.28 -0.11 0.06 -0.12 -0.55 0.49 1.00
ve,cl 0.71 0.25 0.24 -0.10 0.19 0.39 -0.62 -0.45 1.00
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Figure 4.1: The sensitivity of multi-angle polarimetry to cloud and aerosol optical proper-
ties is demonstrated in this figure. Black lines are RQ in the scattering plane for a simulated
cloud (type A) with an optical thickness of 20.0 and a vertically uniform droplet size dis-
tribution of re = 6.25µm, ve = 0.75 from the ground to 480m. The top panel is reflectance
at 0.555µm, while the bottom panel is reflectance at 0.865µm. Blue lines are reflectance
from the cloud when the top has been raised by 500m. Green lines are the reflectance of a
cloud containing different droplet sizes, (re = 10µm, ve = 0.05). Red and magenta lines
indicate the reflectance of a cloud with aerosols above, the former for ’Mexico City’ type
urban aerosols with τ(0.555) = 0.2 and the latter for ’African Savanna’ biomass burning
aerosols with an optical thickness of τ(0.555) = 0.4 from Dubovik et al. [2002]. All scenes
are simulated with a solar zenith angle of θs = 45◦ and a relative azimuth angle of φ = 45◦.
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MODIS Terra image from 17:20 UTC

RSP scene

16:05 UTC; Altitude: 5380m
Relative Azimuth angle: 20˚
Solar Zenith Angle: 44˚
20.15˚ N, 96.68˚ W

J-31 Aircraft flight track 

(South to North)

Descending spiral

Veracruz

Gulf of Mexico

MODIS fire locations 

(previous eight days)

Mexico City

AERONET sites

Figure 4.2: The spatial context of our AAC scene is presented in this figure. The blue circle
indicates the location of RSP observations, above a marine stratocumulus cloud on the Gulf
of Mexico coast. A portion of the J-31 flight track is shown in yellow. The J-31 performed
a spiral to the surface about 125km northwest of the scene, and data collected during this
descent provided information about cloud and aerosol vertical distribution. Aerosol sources
include urban/industrial emissions in the Mexico City Metropolitan Area (MCMA) basin,
a high valley to the west, and numerous (mostly agricultural) fires indicated by the red
fire icons. Fire locations were identified by the MODIS active fire product and represent
fires within the previous eight days. The MODIS Terra instrument captured the underlying
image about an hour and fifteen minutes after our scene was observed.
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Figure 4.3: The aerosol optical depth and temperature during the downward spiral north-
west of our scene are presented in this figure. Optical depth observations were made by
the AATS-14 instrument, and the derivative with respect to height (equivalent to the extinc-
tion coefficient) of observations at 0.519µm is presented in black. Two layers of aerosols
are present. The lowest, between about 150 and 350m, was most likely not observable
in our scene. The upper layer, between 550 and 750m, was probably above the cloud
and therefore the same AAC that we observed in our scene. The atmospheric temperature
profile is shown in green. At 480m, there is a sharp change in the temperature profile.
This probably marks the upper boundary of the marine stratocumulus cloud that existed at
this location several hours before. Based on this information, we constructed our radiative
transfer model so that the cloud top is at 480m, with an aerosol layer above between 550
and 750m. The initial aerosol optical thickness value of the upper layer was estimated to
be 0.16 at 0.555µm from AATS-14 data.
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Figure 4.4: Emission sensitivity footprint for the 500-750m altitude range at our AAC
scene obtained from FLEXPART driven by meteorological data from ECMWF.
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Figure 4.5: Simulated retrieval error for ’Mexico City’ type aerosols (see Dubovik et al.
[2002]) suspended above a marine stratocumulus cloud. The aerosols, which were placed
in a uniform layer between 550 and 750m above sea level, were simulated at a variety of
optical depths. The x-axis of each plot is the fine mode aerosol optical depth at 0.555µm.
Coarse mode optical depth was maintained at 20% of the fine mode value for each sim-
ulation. The marine stratocumulus cloud had an effective radius of re,cl = 6.25µm and
effective variance of ve,cl = 0.075, an optical depth of 10, and was uniformly distributed
(with respect to pressure) from the ground to 480m. Solid lines are the simulated errors
for an observation including all view zenith angles within 60◦ of nadir, which is similar to
our scene and includes the cloud bow (and corresponds to a scattering angle range of 85◦

to 150◦). Dashed lines are the simulated errors for an optimization that only uses obser-
vations at angles between 20◦ and 60◦ in the forward direction, which excludes the cloud
bow and is similar to the method of Waquet et al. [2009c], who had greater uncertainty
when determining cloud parameters. These angles correspond to a scattering angle range
of 85◦ to 120◦. Dotted lines are the accuracy thresholds described in Mishchenko et al.
[2004] required to improve aerosol climate models. It is important to note that these values
are intended for retrievals of aerosols in the absence of clouds or clouds in the absence of
aerosols - not AAC. Also, the threshold for effective radius (top right) is 0.1µm, greater
than all the simulated errors in that plot. The single scattering albedo (bottom, center)
accuracy threshold is 0.03, less than all simulated error values.
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Figure 4.6: RSP observations (solid lines) were matched to a look up table of cloud optical
properties (dashed lines) to determine initial cloud droplet size properties for the optimiza-
tion. The cloud that matched best had droplets with an effective radius of re,cl = 6.25µm
and effective variance of ve,cl = 0.075. Low frequency differences (bias) between cloud
and RSP RQ are due to the effects of aerosols and Rayleigh scattering on the observation.
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Figure 4.7: RSP observations (solid lines), and the model match (dashed color/black lines)
to those observations.
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Figure 4.8: The topmost panel in this figure is the spectral dependence of retrieved total
aerosol optical thickness (black line) and the AATS observation (green line) at an altitude of
480m during the downward spiral indicated in figure 4.2. The bottom panel is the spectral
dependence of the total single scattering albedo. The black line is the RSP retrieved single
scattering albedo, where the large error bars are omitted for clarity (they would fill the entire
range of values in the plot). Red indicates SSFR observations as described in Bergstrom
et al. [2010].
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Chapter 5

Surface BRDF estimation from an aircraft compared to

MODIS and ground estimates at the Southern Great

Plains site

5.1 Abstract

Surface albedo, which quantifies the amount of solar radiation reflected by the ground,

is an important component of climate models. However, it can be highly heterogeneous,

so obtaining adequate measurements are challenging. Global measurements require orbital

observations, such as those provided by the Moderate Resolution Imaging Spectroradiome-

ter (MODIS). Satellites estimate the surface bidirectional reflectance distribution function

(BRDF), a surface inherent optical property, by correcting observed radiances for atmo-

spheric effects and accumulating measurements at many viewing and solar geometries.

The BRDF is then used to estimate albedo, an apparent optical property utilized by climate

models. Satellite observations are often validated with ground radiometer measurements.

However, spatial and temporal sampling differences mean that direct comparisons are sub-

ject to substantial uncertainties. We attempt to bridge the resolution gap using an airborne

radiometer, the Research Scanning Polarimeter (RSP). RSP was flown at low altitude in the

vicinity of the Department of Energy’s Southern Great Plains Central Facility (SGP CF) in
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Oklahoma during the Aerosol Lidar Validation Experiment (ALIVE) in September, 2005.

The RSP’s scanning radiometers estimate the BRDF in seconds, rather than days required

by MODIS, and utilize the Ames Airborne Tracking Sunphotometer (AATS-14) for atmo-

spheric correction. Our comparison indicates that surface albedo estimates from RSP and

MODIS agree with Best Estimate Radiation Flux (BEFLUX) ground radiometer observa-

tions at the SGP CF. Since the RSP is an airborne prototype of the Aerosol Polarimetery

Sensor (APS), due to be launched into orbit in 2009, these techniques could form the basis

for routine BRDF validation.

5.2 Introduction

A proper understanding of surface albedo has been a priority of the remote sensing commu-

nity since its origins. Besides providing information about the nature of the surface itself,

remote-sensing retrievals of atmospheric properties must often account for the effects of

the surface reflectance. Albedo is also an important determinant of where radiation is ab-

sorbed in climate models, yet it is spatially and temporally heterogeneous, and thus difficult

to include realistically in those models. In addition, anthropogenic surface albedo changes

can alter the global climate, but quantification of this process is dependent upon the data

that are used by models [Myhre and Myhre, 2003]. Global albedo estimates from sensors

on satellite platforms are now being compiled into climatologies appropriate for modeling

(Lucht et al. [2000b], Schaaf et al. [2002], Luo et al. [2005]). It is important, then, to

verify the validity and accuracy of these global albedo products, and to identify any fea-

tures of these products that would improve the reality of global models without introducing

unnecessary complexity.

Albedo is complex and highly variable. It is a function of the surface material and its to-

pography, which is spatially and temporally heterogeneous, and the angle at which the sur-

face is illuminated and observed. Low earth orbit satellite platforms with instruments such

as the Moderate-Resolution Imaging Spectrometer (MODIS) and the Multi-angle Imaging
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SpectroRadiometer (MISR), as well as instruments on geostationary satellites (Martonchik

et al. [2002], Pinty et al. [2005]) are well suited to building climatologies for modeling

purposes, as they have a spatial coverage and measurement repeat cycle that is impossible

to achieve from ground or aircraft measurements. However, significant analysis is required

to reduce the apparent optical properties (AOP’s), as seen at a satellite, to inherent optical

properties (IOP’s) suitable for use in a climate model. Surface AOP’s depend on the solar

and viewing geometry and on the atmospheric state through extinction of the direct solar

beam before and after it reaches the surface and scattering of radiation on its way to and

from the surface. For example, the measurement that is closest to a direct estimate of albedo

is the ratio of upwelling and downwelling fluxes, which is nonetheless an AOP since it de-

pends on the atmospheric state. Since the atmospheric state varies within a climate model,

the albedo must be described in an independent manner as an IOP of the surface, that is

then used in a coupled calculation of the radiative transfer in the surface-atmosphere sys-

tem. The bidirectional reflectance distribution function (BRDF) is an IOP that describes

the reflectance of a surface when illuminated by an infinitesimally narrow beam of radia-

tion and viewed through an equally infinitesimally narrow beam, and is a function of the

geometry of those two beams. Because of this, the BRDF is a theoretical property that

can only be estimated [Schaepman-Strub et al., 2006]. Although several approaches have

been developed for the estimation of the BRDF over a wide angular range (Bruegge et al.

[2000], Gatebe et al. [2003]) a more common BRDF estimation approach is to fit an at-

mospherically corrected and geometrically variable set of measurements to semi-empirical

BRDF models (Engelsen et al. [1998], Lucht et al. [2000b]). The empirical BRDF model

can then be used to derive quantities that are not readily observable, such as the variation

of the albedo as a function of solar zenith angle that is the function of relevance to most

current climate models.

BRDF estimation from orbit is subject to several hurdles. First, atmospheric effects

must be removed, which is complicated by multiple surface-atmosphere interactions. Sec-

ond, a sufficient angular range of measurements must be accumulated to provide a robust
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estimate of the empirical BRDF model. In the case of fixed angle instruments such as

MODIS, this accumulation requires several days, over which albedo characteristics may

have changed. Multi-angle instruments such as MISR and the Research Scanning Po-

larimeter (RSP, described below) sample a much larger angular range nearly instantly, but

this is at the expense of spatial coverage. Third, in order to be effective for global eval-

uation of albedo, the semi-empirical BRDF models must encompass a sufficient range of

surface BRDF’s that their marginal integrals, such as albedo, are not biased by the choice

of model. Finally the data-model fitting method should be resistant to noise and method-

ological errors.

Because of the difficulties of BRDF estimation from orbit, a robust validation effort

is required to have sufficient confidence to apply satellite derived climatologies to climate

models. As we noted above, ground radiometers make a measurement that is more directly

related to albedo than remote sensing measurements and they make that measurement as

the solar zenith angle varies over the course of the day. Correctly modeling this energy

input to the surface as a function of solar zenith angle is important for general circulation

models. These measurements therefore provide the appropriate validation of the albedo

derived from satellite, or aircraft measurements. However, care needs to be taken when

comparing with the ground radiometers to properly account for the atmospheric state and

the spectral sampling provided by the remote sensing measurements as compared to the

total fluxes measured at the surface.

Recently, there have been several efforts to compare MODIS albedo products to ground

radiometer data from the Department of Energy’s (DOE) Southern Great Plains Central Fa-

cility (SGP CF) in North-Central Oklahoma, USA (Luo et al. [2003], Yang [2006], Schaaf

et al. [2006]), and to other ground radiometers (Liang et al. [2002], Jin et al. [2003]). For

example, Yang [2006], compared parameterizations of MODIS albedo (Liang et al. [2005],

Wang et al. [2007]) to Best Estimate Radiation Flux (BEFLUX) radiometers (Shi and Long

[2002]) and found some differences in the shape of the albedo as a function of solar zenith

angle. Since the the BEFLUX radiometers provide the direct estimate of the energy input
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to the surface that we are interested in for global applications it is important to understand

whether these differences were due to inadequacies in the MODIS data itself, its parame-

terizations, or problems with the comparison method.

Albedo data measured from aircraft utilizing multi-angle and multi-spectral radiome-

ters at the SGP CF offer the possibility to investigate and resolve this issue. The Aerosol

Lidar Validation Experiment (ALIVE) took part in September of 2005 in the vicinity of the

SGP CF in northern Oklahoma. During ALIVE, a Jetstream-31 (J-31) turboprop aircraft

flew several low altitude transects about 200m above the SGP CF. The J-31 carried sev-

eral instruments. The principal instrument used here is the Research Scanning Polarimeter

(RSP), a scanning polarimeter that is intended for aerosol and cloud research and is a pro-

totype for the Aerosol Polarimetery Sensor (APS). The APS is due to be launched as part

of the NASA Glory mission in 2008 (Mishchenko et al. [2007a]). RSP was flown at low

altitudes to collect data for the best possible estimate of the surface reflectance and BRDF.

More details about the RSP are given in section 5.3.3.1. The Ames Airborne Tracking Sun-

photometer (AATS-14) was also on the J-31. The AATS-14 is a fourteen spectral channel

sun tracking sun-photometer [Schmid et al., 2006] that provides accurate measurements of

aerosol optical depth above the aircraft. The AATS-14 measurements of aerosol above the

aircraft in conjunction with measurements from AErosol RObotic NETwork (AERONET)

[Holben et al., 1998] ground-based sun-photometers allows us to perform an extremely ac-

curate atmospheric correction of the RSP measurements. The atmospherically corrected

RSP surface measurements were fit to BRDF models from which albedos were derived and

compared to MODIS and BEFLUX results. In addition, a land cover based approach, sim-

ilar to that used in Liang et al. [2002], was used to evaluate the differences in spatial scale

between MODIS, RSP and BEFLUX data.

The purpose of this paper is to evaluate the MODIS BRDF retrievals that use semi-

empirical kernel models to derive albedos and surface albedo parameterizations. As part

of this evaluation, we also investigate previous validation efforts at the SGP CF. RSP data

provide a unique opportunity to bridge the spatial and temporal resolution differences be-
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tween MODIS and ground radiometers in a well characterized atmospheric regime at the

SGP CF.

5.3 Background

5.3.1 Albedo, BRDF, and other definitions

Instruments observe many forms of what we call reflectance, which can have a somewhat

complicated and ambiguous terminology. We use nomenclature of Nicodemus et al. [1977],

reviewed in Schaepman-Strub et al. [2006], which is briefly described here.

Reflectance, as it is most generally described, is the ratio of radiant exitance from a

surface to the irradiance, E, incident upon that surface. Both radiant exitance and irradi-

ance have units of [Wm−2], so reflectance, ρ, is unitless, and is constrained to the interval

[0, 1]. The reflectance factor, R, is the ratio of the radiant exitance from a surface to the ra-

diant exitance leaving a perfectly reflective, Lambertian (isotropic) surface under the same

irradiance. Occasionally, such as the case of strong forward reflectance, the reflectance

factor can exceed one. Both are functions of solar zenith angle, θs, view zenith angle, θv,

solar azimuth angle, φs, view azimuth angle φv, and wavelength, λ. We define wavelength

for the narrow band instruments of interest here (RSP and MODIS) as the solar spectrum

weighted center, Λ, of the spectral band of a particular instrument.

The bidirectional reflectance distribution function (BRDF ) describes the scattering

of a parallel beam of incident light from one direction into another direction, defined as

the ratio of the radiance observed through an infinitesimally small solid angle cone to the

irradiance illuminating that surface within an infinitesimal solid angle.

BRDF (θs, θv, φs, φv, λ) =
dL(θs, θv, φs, φv, λ)

dE(θs, φ, λ)
[sr−1] (5.1)

The radiance, L, is the quantity of radiant flux per unit solid angle per unit wavelength

and has units of [Wm−2sr−1]. The BRDF is an inherent optical property (IOP) and thus
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represents the intrinsic properties of the surface. Since it is defined with infinitesimal quan-

tities it can not be directly measured. Its estimation, however, is important since apparent

optical properties (AOP’s) can be derived from the BRDF in a consistent fashion appro-

priate for validation. Moreover, given the typical scale of angular BRDF variations, it can

be sampled and accurately estimated.

Schaepman-Strub et al. [2006] cites several AOP’s that can be derived from the BRDF ,

but we use only two. The directional-hemispherical reflectance (DHR), called the ’black-

sky’ albedo in MODIS terminology, is the view geometry integrated, total radiant exitance

when the surface is irradiated by a plane parallel beam. This is also known as the planetary

albedo in the astronomical literature.

DHR(θs, φs, λ) =

∫ 2π

0

∫ π
2

0

BRDF (θs, θv, φs, φv, λ)cos(θv)sin(θv)dθvdφv (5.2)

Many publications assume DHR is independent of the solar azimuth angle (φs) which

is the case if the BRDF only depends on the difference between view and solar azimuth

angles. If surface properties have no preferred direction this is a reasonable assumption. In

our case in central Oklahoma, many of the surfaces are plowed fields or otherwise human

influenced, so the DHR will not necessarily be invariant with respect to solar azimuth angle

and the BRDF will depend on both the view and solar azimuth angles independently. The

magnitude of this azimuth angle dependence is unknown. To maintain consistency with

previous literature and MODIS and BEFLUX products, we assume solar azimuth angle

independence, but comment further on this issue in section 5.5.5.

Another albedo related quantity is the bihemispherical reflectance (BHR), which rep-

resents the solar and view geometry integration of the BRDF (or the solar geometry in-

tegration of the DHR). When the solar downwelling is assumed isotropic, BHR is the

’white-sky’ albedo in MODIS terminology. This is also known as the spherical albedo in

the astronomical literature.
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BHR(λ) =
∫ π

2

0

∫ 2π

0

∫ π
2

0

∫ 2π

0
BRDF (θs, θv, φs, φv, λ)cos(θv)sin(θv)cos(θs)sin(θs)dθvdφvdθsdφs

(5.3)

A function that we will define is the normalized DHR (nDHR). Many climate models

assume that the shape of the DHR is spectrally invariant, and thus take as inputs that

shape and some scaling factor as a function of wavelength and surface type. The nDHR is

defined to be

nDHR(θs) =
DHR(θs, λ)

DHR(60◦, λ)
(5.4)

The nDHR will be used to compare different albedo related measurements and to provide

a direct comparison with the previous work of Yang [2006].

5.3.2 Ross-Li BRDF kernel models

The BRDF is a theoretical parameter impossible to measure directly, even with the large

number of view angles available with the RSP. BRDF estimation is aided with the use of

surface reflectance models, where available measurements are fit with a combination of

kernels, each representing the geometric reflectance behavior a particular surface type. In

this work, we use the kernel models employed in MODIS BRDF products, as described

in Lucht et al. [2000b], and hereafter referred to as the Ross-Li BRDF model. Previous

work has identified these kernels as providing a robust and efficient framework for BRDF

estimation (Schaaf et al. [2002]) on a global scale, even when only a limited geometric

range of measurements are available. Our assessment of the use of these particular kernels

here is therefore limited to how well they represent the dense angular sampling of the RSP

measurements. An assessment of the BRDF model validity for use in the evaluation of the

surface albedo in global climate models is provided by comparisons to BEFLUX data.

The Ross-Li BRDF model decomposes surface reflectance into three types of scattering,

and combines them in the following form:
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BRDF (θs, θv, φ, λ) *

ρ(θs, θv, φ, Λ) = fiso(Λ) + fvol(Λ)Kvol(θs, θv, φ) + fgeo(Λ)Kgeo(θs, θv, φ)
(5.5)

where Kvol and Kgeo are the volumetric and geometric scattering kernels, respectively, and

fiso, fvol and fgeo, are the isotropic, volumetric and geometric kernel scaling parameters. φ

is the relative view-sun azimuth angle (φ = φv−φs). In practice, an optimization is used to

find the best kernel scaling parameters (f ) to a set of measured reflectances (ρ). The result

is an estimation of the BRDF.

The first scaling parameter, fiso, represents isotropic scattering, which has no depen-

dence on incidence or view angle and thus does not have a geometrically dependent kernel.

Volumetric scattering represents the scattering within a dense vegetation canopy, and is

based on a radiative transfer approximation of single scattering due to small, uniformly

distributed and non-absorbing leaves. The angular behavior of this kernel is to have a mini-

mum near the backscatter direction and bright limbs. As described in Roujean et al. [1992]

and Ross [1981], the volumetric kernel, normalized to zero for θv = θs = 0, is:

Kvol =
(π/2− ξ)cosξ + sinξ

cosθs + cosθv
− π

4
(5.6)

where ξ is the scattering angle, defined to be cosξ = cosθvcosθs + sinθvsinθscosφ.

Geometric scattering represents surfaces with larger gaps between objects, and thus

accounts for self shadowing. The angular behavior of this kernel is therefore to have a

maximum at backscattering where there are no shadows. Kgeo is based on the work of

Wanner et al. [1995] and Li and Strahler [1992], but is used in the reciprocal form given

in (Lucht et al. [2000a]). This reciprocal form, in the special case that the ratio of the

height of the tree at the center of the crown to the vertical crown radius (h/b in Luo et al.

[2005]) is two and the ratio of the vertical crown radius to the horizontal crown radius is

one (spherical, or compact crowns, b/r in Luo et al. [2005]) as is used in the MODIS data

processing, is
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Kgeo = O(θs, θv, φ)− sec θs − sec θv +
1

2
(1 + cosξ) sec θs sec θv

O =
1

π
(t− sin t cos t)(sec θs + sec θv)

cos t =

√
D2 + (tan θs tan θv sin φ)2

sec θs + sec θv

D =
√

tan2 θs + tan2 θv − 2 tan θs tan θv cos φ

(5.7)

5.3.3 Instrument description

5.3.3.1 RSP

The Research Scanning Polarimeter is an airborne prototype for the Aerosol Polarimetery

Sensor (APS), due to be launched in 2008 as part of the NASA Glory Project [Mishchenko

et al., 2007a]. The main goals of RSP/APS are to retrieve a complete suite of aerosol

and cloud microphysical parameters together with the vertical distribution and integrated

number concentration of particles from orbit (Mishchenko et al. [2004], Mishchenko et al.

[2007b]). The RSP has nine optical channels with center wavelengths of 410, 470, 555,

670, 865, 960, 1590, 1880 and 2250nm. This work utilizes all of these bands except for the

960 and 1880nm channels, which are used to estimate water vapor column amounts and

detect thin cirrus clouds respectively. Details about the RSP/APS aerosol retrieval using

polarimetry can be found in [Cairns, 2003] and [Chowdhary et al., 2002].

In addition to measuring the polarized reflectance beneath the RSP with each scan, the

instrument also measures the total (unpolarized) reflectance. While this information is not

currently utilized to retrieve aerosol parameters over land, it is useful to independently val-

idate surface albedo values retrieved by MODIS or other orbital platforms. Each RSP scan

begins about 60◦ forward of nadir in the direction of aircraft motion, and samples at 0.8◦ in-

tervals to about 60◦ aft of nadir. Thus each scan contains about 150 instantaneous samples

at a variety of sensor viewing geometries. A BRDF estimation is therefore possible with a

larger set of surface anisotropic reflectances, as opposed to fixed viewing angle instruments,

such as MODIS, which require an accumulation of observations over several days (16 in
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case of the MODIS MCD43B product) before the BRDF can be estimated [Lucht et al.,

2000b]. The instantaneous field of view (IFOV) of the RSP is fourteen milliradians, which

corresponds to a 2.8m ground pixel size assuming an altitude of 200m above the ground.

RSP measurements were made over a period of two weeks during the ALIVE campaign in

September, 2005. Two flights, labeled JRF03 and JRF04 in ALIVE terminology, were on

September 16th and were chosen for this analysis for the clear, cloudless conditions at that

time, and the low altitude segments of those flights that were made in the vicinity of the

SGP CF. More details about data selection for the RSP are in section 5.4.1.1.

The RSP performed two types of flights during ALIVE. The first type was to collect

data at an altitude above the majority of the atmospheric aerosols, generally 4-5km above

ground on September 16th, 2005. An indication of the required altitude was provided by

the AATS-14, see section 5.3.3.2. The atmospheric state is determined from these measure-

ments, which are then applied in the atmospheric correction of data from the second type

of measurements, collected at as low an altitude as possible. These low altitude data (about

200m above the ground) were used for BRDF estimation. The low altitude was key to min-

imize the atmospheric effect between the RSP and the ground, maximize spatial resolution,

and minimize the effect of aircraft motion on efforts to combine views from different scans

into a multi-angle observation of a single surface location.

5.3.3.2 AATS-14, ancillary data, and the radiative transfer model

RSP surface reflectance retrievals utilized several types of ancillary data. These data were

used in the atmospheric correction of the observed radiances to remove atmospheric ef-

fects. An important component of the RSP atmospheric correction was the Ames Airborne

Tracking Sunphotometer (AATS-14), co-located on the J-31 with the RSP. The AATS-14

provides a continuous record of aerosol optical depth above the aircraft in fourteen chan-

nels from 354 to 2139nm [Schmid et al., 2006]. These data were used in three ways. First,

AATS-14 measured the vertical extent and distribution of aerosols during aircraft ascent

and descent. This identified the required altitude for ’high altitude’ RSP measurements
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where aerosol parameters are retrieved. Second, information about the aerosols, such as

the nature of their vertical distribution and the presence of very large coarse mode aerosols

helped constrain the RSP aerosol retrievals. Finally, AATS-14 measurements during ’low

altitude’ flights identified where in the aerosol layer the aircraft was located. This is par-

ticularly useful when AATS-14 data are compared to AERONET ground sun-photometers,

which thus indicates the aerosol optical depth between the instrument and the ground.

Several other sources of data provide ancillary information necessary to remove the ef-

fect of various components of the atmosphere. Ozone absorption, which is greatest in the

470 and 555nm bands, is based on the daily 1◦ × 1◦ values from the Total Ozone Mapping

Spectrometer (TOMS) [McPeters and Center, 1998]. Absorption due to NO2, greatest at

the shortest wavelength channels, is estimated using Scanning Imaging Absorption Spec-

trometer for Atmospheric Chartography (SCIAMACHY) data [Bovensmann et al., 1999].

Water vapor content was measured by the Microwave Radiometer (MWR) located at the

SGP CF [Morris, 2006].

5.3.3.3 MODIS

The MODerate resolution Imaging SpectroRadiometer (MODIS) is a multispectral remote

sensing satellite in a polar orbit. There are actually two MODIS instruments, on the morn-

ing equator crossing NASA Terra (EOS-AM) and afternoon equator crossing NASA Aqua

(EOS-PM) spacecraft. Terra was launched in 1999, and Aqua in 2002. Since ALIVE was

in September of 2005, we used a combination of data from both instruments. MODIS

produces a large number of atmospheric and surface products, but we have focused our

attention on the surface albedo retrievals, referred to as product ID MCD43 in MODIS

terminology. We used the ’collection five’ processing version, which has a 500m ground

resolution. MODIS measures surface reflectance at a single view zenith angle with each

scan, so albedos are determined by fitting several days worth of data (containing a variety

of view and solar zenith angles) to a set of BRDF models (described in section 5.3.2). The

methodology for doing so is described in Lucht et al. [2000b] and Strahler et al. [1999],
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and first operational results are presented in Schaaf et al. [2002].

A number of efforts have been made to validate MODIS albedo products. Often, this

takes the form of a comparison of satellite MODIS results to measurements from ground

based radiometers. However, care must be taken to ensure that this comparison accounts

for the spatial and temporal resolution differences between remote sensing instruments

and ground radiometers. MODIS (and RSP) measurements represent a combination of all

reflectances within a pixel, which may include a variety of surface types, while ground

radiometers measure albedo with a smaller spatial scale that is dependent on the height

of the tower on which the upwelling flux measurement is made and the observed portion

of the radiative spectrum. In addition, the multi-day data aggregation required with the

MODIS dataset could be problematic if that aggregation period includes changes to surface

properties. It is therefore difficult to determine if comparisons represent purely instrumental

differences, or are also affected by resolution.

Prior to the launch of Terra, Lucht et al. [2000a] attempted to validate the BRDF ker-

nel fitting method by comparing ground radiometer measurements to reflectances from

other remote sensing platforms. Spatial resolution differences were controlled by doing

this comparison in a region of low albedo variability (grass and scrubland in New Mex-

ico, USA), and BHR results were close enough for accurate climate modeling. Liang

et al. [2002] validated MODIS albedo by ’upscaling’ ground radiometer measurements

from an agricultural region in Maryland, USA. They report less than 5% absolute error.

Jin et al. [2003] compared MODIS albedo to field measurements from the Surface Radia-

tion Budget Network (SURFRAD) and found results that met an accuracy requirement of

0.02 for measurements between April and September. Winter measurements failed to meet

requirements, most likely due to the influence of rapid albedo changes from snow. With

the launch of Aqua, Salomon et al. [2006] updated MODIS albedo validation for the com-

bined Terra/Aqua product using SURFRAD and radiometers at the SGP CF. He found that,

while wintertime albedo remain uncertain as described in Jin et al. [2003], overall coverage

improved while total data averages remained consistent with previous results.
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Validation efforts described above are generally restricted to comparisons of BHR,

whereas for climate modeling a DHR parameterization is also needed. Several attempts

have been made to parameterize MODIS results for application in climate models. Liang

et al. [2005] created a parameterization using DHR and BHR from MODIS, soil moisture

from the North American and Global Land Data Assimilation System (LDAS), fractional

vegetation cover, and leaf and stem area index. Wang et al. [2007] used a simplification of

MODIS DHR and a measure of vegetation type to create another type of parameterization.

Yang [2006] investigated the validity of these parameterizations of DHR by comparing

them to BEFLUX radiometer values at the SGP CF. While both parameterizations agreed

well with each other at this site, Yang [2006] found differences in comparison to ground

radiometers. Parameterization values were much smaller than BEFLUX values at high

solar zenith angles and larger than BEFLUX values at very small solar zenith angles. While

the former is perhaps to be expected considering the lack of MODIS data at high solar

zenith angles, the latter is unexpected and troubling. Our work was initiated as an attempt

to further investigate and possibly resolve the differences found in Yang [2006] with regards

to how well MODIS surface albedo data products can predict surface albedo.

5.3.3.4 BEFLUX

Ground radiometer data were supplied by the Best Estimate Flux (BEFLUX) value-added

procedure (VAP), which is created from several radiometers at the Department of Energy’s

Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility (SGP

CF). BEFLUX radiometers measure diffuse and total hemispherical downwelling irradi-

ance and total hemispherical upwelling irradiance in one minute intervals [Shi and Long,

2002]. These values were combined according to the methodology of Yang [2006] to com-

pute a BHR and DHR representing the rural pasture at the SGP CF in North-central Okla-

homa, USA. This was done in two steps. First, the BHR for the entire month of September,

2007 was determined by finding the average ratio of total upwelling to total downwelling

irradiance from cloudy measurements. These cloudy measurements were identified by the
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ratio of direct to total hemispherical downwelling irradiance. The BHR was then utilized

to find the DHR on the day of the measurement.

5.4 Method

5.4.1 RSP data preparation

5.4.1.1 Data selection

The Aerosol LIdar Validation Experiment (ALIVE) was a field campaign performed in

North-central Oklahoma in September of 2005. This is the location of the Southern Great

Plains Central Facility (SGP CF) of the Atmospheric Radiation Measurement (ARM) Pro-

gram (Department of Energy). While the primary goals of the ALIVE campaign were

not to investigate RSP surface characterization, the proximity to the suite of ground based

instruments at the SGP site, simultaneous measurements of the aerosol profile from AATS-

14, and a series of low altitude flights, provide an ideal data-set with which to investigate

the surface characterization.

Several short, low altitude flight segments were made in the vicinity of the SGP site,

typically preceded or followed by a spiral maneuver used by the AATS-14 to determine an

aerosol optical thickness altitude profile. Surface characteristics were typical for the rural

mid-west of the United States in the fall. The ground was relatively flat, and covered by

a patchwork of late-season crops, bare soil exposed by recent harvesting, and mixtures of

trees and shrubs [Luo et al., 2003]. There are few buildings and the occasional paved road.

Data from two flights were used. Table 5.1 presents these flight times, along with

geometry, aerosol and weather conditions. Aerosol optical thickness at 500nm from an

AERONET Project [Holben et al., 1998] sun photometer at the SGP site is also included to

provide an understanding of aerosol properties from that day.

In table 5.1, the tags in the first row (JRFx) identify the research flight. Start time

for a data file within that flight is listed in UTC. Local time was five hours earlier. Scans
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Table 5.1: Low altitude ALIVE flight segments used for surface characterization

JRF3 JRF4
Date 09/16/2005 09/16/2005
Start time, UTC 16:32:25 22:09:32
Number of RSP scans 270 41
J-31 Altitude above sea level 510m 475m
Relative sensor-solar azimuth −45◦ 156◦

Solar zenith angle 43◦ 62◦

AERONET τa(λ = 500nm) 0.07 0.05
AATS-14 τa(λ = 499nm) 0.06 0.05
sky conditions clear clear

were selected from a particular data file so that they included only low altitude, constant

heading segments. Altitude is listed as meters above sea level. Ground height at the SGP

site is about 315m, so flights had an above ground height between 160 and 195m. The

(relative) azimuth is the instrument heading minus solar azimuth, in degrees. Aerosol op-

tical thickness at 500nm (τa) was measured by the AERONET Project with a ground sun

photometer at the SGP site. Values from the time of flight are provided for comparison.

AATS-14 optical thickness was measured on the J-31. Thus differences between AATS-14

and AERONET represent the optical thickness between the aircraft and the ground, a value

which is well within the AERONET and AATS-14 uncertainty. The last row contains a

visual description of the cloud scenario from the instrument operator.

There were a total of twelve research flights as part of ALIVE, but only flights JRF3

and JRF4, listed above, were suitable for BRDF estimation. JRF3 and JRF4 were the

only flights with low altitude segments when the sky was completely devoid of clouds. As

we shall see later (see section 5.4.1.3), some effort was put into determining the diffuse

downwelling irradiance while estimating the BRDF. This determination is only accurate,

with our models, for clear skies. Including the effects of clouds under partially cloudy skies,

even if implemented with a three dimensional radiative transfer code, would introduce large

uncertainties, as there is limited informational to specify the vertical and horizontal cloud
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distribution.

5.4.1.2 Classification and mixed pixel removal

Before the Ross-Li BRDF models were fit to the data, we separated it into similar classes,

and performed our fitting on each class individually. This was done to limit the dependence

on data coverage differences from flight to flight, and also to facilitate comparisons with

other lower spatial resolution data sets. Prior to image classification, gaseous absorption

effects were removed as described above, and a metric describing the amount of vegetation

(a vegetation index) was calculated for each data point. Data were then split into ’soil’

and ’vegetation’ classes and extreme vegetation index values were removed. Boundary or

mixed surfaces were also removed using an edge detection convolution kernel on the spatial

image of vegetation index. In addition, analyses were performed on an ’all’ class which

contains the entire data-set except for data that were removed as part of the quality control

process. For each of these classes the data were then fit with the Ross-Li BRDF model.

Simple thresholding of the Aerosol Resistant Vegetation Index (ARVI, see Appendix

5.8.2 for details on how it is computed) was used to split the data into a ’soil’ and ’vege-

tation’ class. ARVI values between -0.25 and 0.075 were classified as ’soil’, while ARVI

values between 0.375 and 0.775 were classified as ’vegetation’. Such narrow ARVI re-

gions centered on the modes of each surface type were chosen to avoid mixed pixel data

and focus on the properties of generic ’soil’ and ’vegetation’. Figure 5.4.1.2 is a histogram

of the ARVI for each flight. Peaks for both classes are pronounced, and vertical dashed

lines show the regions used for each class. The histogram computed using different small

segments of the view angle range (not pictured here) is similar to the one shown here indi-

cating an absence of significant BRDF effects on this index. Each flight flew over slightly

different areas in the region of the SGP CF, so there are some differences between the his-

tograms of each flight. In particular, JRF03 has a third peak at about an ARVI of 0.25,

possibly indicating post-harvest, sparsely vegetated, fields that were not observed during

JRF04. Since that surface type is not present in JRF04 data, it was omitted in the study.
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Figure 5.1: Histograms of the Atmospherically Resistant Vegetation Index (ARVI) for each
flight. Vertical dotted lines represent the boundaries of the ’soil’ and ’vegetation’ class
thresholds.

Furthermore, JRF04 contains less data than JRF03, as the length of flight time dedicated

to the low altitude segment was less in JRF04. Few measurements passed the ’soil’ class

criteria. After additional screening, described below, only the ’vegetation’ class remained

from JRF04. Finally, a third, ’all’ class was created for ARVI values between -0.25 and

0.775. For consistency, additional screening procedures described below were applied to

this class as well.

To further restrict our data to generic land types, the ARVI spatial image is used to

identify data that is in the middle of a patch of soil or vegetation. An edge detection algo-

rithm was applied that uses a discrete convolution with a 3×3 spatial kernel. This kernel is

applied as a multiplier to each pixel and its neighbors in the image, and the summed result

of each multiplication forms the value of that pixel in the resulting image. This is a discrete

version of the gradient and the technique (when this mask is added to the original image

to enhance boundaries) is also called unsharp masking [Gonzalez and Woods, 1992]. The

gradient image is used to remove boundary and mixed pixels. A threshold, η = 0.1, was
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chosen such that pixels satisfying |∇(ARV I)| > η are excluded. η was selected arbitrarily,

but it is of the same magnitude as the ARVI range for the soil class, thus adjacent pixels

containing as much variability as the narrowest class (or more) are removed. Figure 5.2

illustrates the classification and imagery from flight JRF3. Classification results (in part

5.2d) compare favorably with intuition from the imagery (part 5.2a), and take boundary

and edge pixels (part 5.2c) into account. Note also the small quantity of data available for

analysis. For safety reasons, the aircraft was flown at low altitude for only short segments

near the SGP site.

Several geometric screening criteria were also applied. Data with view zenith angles

greater than 65◦ were removed. This was done to avoid view angles at the extremes of

measurement capability. Since the RSP is scanning in the direction of aircraft motion, data

from turns were excluded because those scans may not represent a single ground location.

Thus, data from aircraft headings 3◦ greater or less than an average heading were removed.

The effects of both of these geometric screening criteria are evident in figure 5.2d, where

data at the right of the image have been removed because their zenith angle was too large,

and data at the top removed because this is were the aircraft began banking into its spiral

ascent for the next segment of the flight.

Image data were rearranged so that each scan represents a set of view angles about

a single ground location, rather than the actual order of measurements (which represent

a set of view angles about an airborne location). While this has no effect on the actual

data, classification results for each scan were checked for consistency. This final screening

criteria (which is not displayed in figure 5.2) required that 50% of the data in a scan must

have passed all previous screening criteria and were grouped into a single class. The result

is a set of data that is of a consistent surface type over most of the view angle range and that

has had any outlier measurements, which may represent noise, surface boundary or mixed

pixel effects removed.
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JRF03 imagery, vegetation index, index variability, and classification results
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Figure 5.2: Data from flight JRF03 was used to show (from left to right), a) Ground re-
flectance, where the 670nm band is displayed in the red channel, the 865nm band in the
green channel, and the 470nm band in the blue channel, b) Atmospherically Resistant Veg-
etation Index (ARVI), with the color bar at the right, c) gradient of ARVI, used to remove
boundary and edge pixels with its color bar at the right, and d) classification results, where
red indicates ’soil’ type, green indicates ’vegetation’, and black are unclassified areas.
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5.4.1.3 Determination of ground reflectance and the diffuse effect

Measurement of ground reflectance from an aircraft requires adequate compensation for

atmospheric effects. During ALIVE, a high quality characterization of the atmospheric

scattering was provided by the combination of polarized RSP measurements (above the

aerosol layer) with the vertical profile of aerosol optical thicknesses from the AATS-14.

This cannot be used to determine the ground reflectance directly because of the multiple

scattering that occurs between the atmosphere and the surface. The atmospheric correc-

tion is therefore performed using an iterative process, where initial estimates of surface

reflectance are adjusted until the surface-atmosphere scattering model reproduces the re-

flectance measured by the RSP.

The atmospheric-surface model uses the doubling and adding method (Lacis and Hansen

[1974], Hansen and Travis [1974]), and produces a reflectance to compare to RSP data,

given aerosol and other atmospheric properties together with solar and instrument geome-

try and kernel values for the Ross-Li BRDF reflectance model. The observed reflectance

can be separated into an atmospheric and a surface component:

ρo(θs, θv, φ, λ) = ρa(θs, θv, φ, λ) + S(θs, θv, φ, λ) (5.8)

where ρo is the reflectance at the altitude of the observations, ρa is the reflectance due to

atmospheric scattering of radiance into the instrument field of view without interacting with

the surface (path radiance) and S includes all surface interaction terms. In what follows we

are primarily interested in S and the correction for diffuse and multiple interaction terms,

since we have an accurate and comprehensive characterization of the atmosphere from high

altitude RSP measurements that allows us to calculate ρa. We will differentiate between

measurements and model calculations by using a caret for those quantities that are direct

observations. The surface interaction term, S, can be calculated using the expression
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S(θs, θv, φ, λ) =
[
t↑(θv, λ) + T ↑(λ)∗

]
ρg(θs, θv, φ, λ)

[
t↓(θs, λ) + ∗T ↓(λ)

]
+

[
t↑(θv, λ) + T ↑(λ)∗

]
Σ(θs, θv, φ, λ) ∗ ρg(θs, θv, φ, λ)

[
t↓(θs, λ) + ∗T ↓(λ)

]

(5.9)

where ρg is the surface reflectance, t is the direct solar transmittance, and T is the diffuse

transmittance, with the arrows indicating whether they apply to transmission from the sun

to the ground (↓) or from the ground to the observational altitude (↑). The star symbol,

∗, indicates that integrations over zenith and azimuth are performed for diffuse interac-

tions. As is usually the case for scattering problems with no preferred azimuthal plane,

that integration is actually implemented using a Fourier decomposition and re-summation

(Hovenier [1971], Hansen and Travis [1974], and de Haan et al. [1987]). The function Σ

is used in the calculation of multiple surface atmosphere interaction terms and is given by

the formula

Σ(θs, θv, φ, λ) =
∞∑

i=1

(ρg(θs, θv, φ, λ) ∗ ρa,(θs, θv, φ, λ))i (5.10)

where ρa, is the reflectance of the atmosphere illuminated from below. The implementation

of this summation is described in (Hovenier [1971], Hansen and Travis [1974], and de Haan

et al. [1987]).

In equation 5.8, ρo is measured by the RSP and calculated with the doubling-adding

model, while ρa, t, T and Σ are determined from the model based on the atmospheric state

that is prescribed by AATS-14, AERONET and high altitude RSP data. The model includes

the effects of both Rayleigh (molecular) and aerosol scattering. In order to find an estimate

of ρg that has the effects of diffuse transmission and multiple surface-atmosphere scattering

removed, we use the following iteration
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ρg
p+1(θs, θv, φ, λ) =

[
Ŝ(θs, θv, φ, λ)

Sp(θs, θv, φ, λ)

]
ρg,k

p (θs, θv, φ, λ) = γp(θs, θv, φ, λ)ρg,k
p (θs, θv, φ, λ)

(5.11)

where p is the iteration index, ρg,k is the kernel fit to the latest estimate of surface re-

flectance and Ŝ is the observation corrected for path radiance. We have implicitly defined

the function γp, which is the ratio of measurement to model S, to adjust the surface re-

flectance until the model calculated reflectance matches the observations. This iteration is

similar to that introduced by Chahine [1968] for atmospheric sounding. The kernel fit to

the reflectance uses a least mean square estimate of the kernel coefficients, so the vector of

kernel coefficients, f, is given by the expression

fp+1 =
([

K(θv)
T K(θv)

]−1 K(θv)
T
)

ρg
p+1(θv) (5.12)

and the kernel estimate for the surface reflectance at the observed viewing geometry is

ρg,k
p+1(θv) = K(θv)fp+1 (5.13)

with K being the 3xN reflectance kernel matrix formed from the isotropic, volumetric and

geometric kernels (cf. equation 5.5) and N is the number of view angles for the given

viewing geometry. K and f depend on the same set of wavelength (λ) and other geometric

parameters (θs, φ), so those subscripts are omitted from the above equations. The iteration

is initialized with the value

ρg
1(θs, θv, φ, λ) =

Ŝ(θs, θv, φ, λ)

t↑(θv)t↓(θs)
(5.14)

In an atmosphere with no scattering this initial value gives the atmospherically corrected

surface reflectance, and no further iterations are therefore necessary. Otherwise, equations

5.11 through 5.13 are iterated until γ is close to unity. If there is scattering in the atmo-

sphere, we can determine that γ < 1 from equation 5.9 for the first step in the iteration.
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This is a necessary condition for the convergence of this iteration [Twomey, 1977]. Con-

vergence also requires that the matrix associated with the estimate of the kernel parameters

is diagonally dominant (Dubovik and King [2000], Appendix C). Since we are interested

in the convergence of the estimation of the weights associated with the kernels we define

matrix M

Mjk =

(
∂ln

[
ρg,k(θv,l)

]

∂ln [fj]

)−1
∂ln [S(θv,l)]

∂ln [fk]
(5.15)

where we use the convention that there is a summation over repeated subscripts. The aver-

age degree of diagonal dominance of that matrix, dd, is

dd =
∑

i

∑
i(=j |Mij|
Mii

(5.16)

As expected (see figure 5.3), dd is largest at shortest wavelengths, where the effects of

scattering are largest, and smallest at the longer wavelengths, where the effects of scattering

are negligible.

The final iteration products are the kernel values of the Ross-Li surface reflectance

model. The iteration was repeated between 5-9 times for each band until the change in

kernel values for each iteration was smaller than 10−5.

5.4.1.4 Spectral to broadband albedo computation

DHR and BHR, as calculated in the previous section, represent surface properties in a set

of narrow instrument bands. Data from these narrow bands must be spectrally interpolated

if they are to be compared to broadband ground radiometer data such as that from BE-

FLUX. In MODIS products, this is done according to the methodology of Liang [2001] and

validated in Liang et al. [2003]. Liang [2001] used libraries of surface reflectance spectra

and model simulations to create a set of coefficients that are applied to scene albedo val-

ues to approximate a broadband DHR or BHR. These coefficients are applied uniformly

across the entire MODIS dataset. Our RSP-ALIVE dataset comprises a single day with
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Figure 5.3: Average (for each wavelength band) ratio of off-diagonal to diagonal elements
of matrix M (see equation 5.15). This ratio, dd, is described in equation 5.16.

a well known atmospheric scenario. In this sense, we are fortunate in that we can utilize

knowledge about the atmosphere in our broadband albedo computation, and we do so as

follows.

Conversion of DHR(Λ, θs) to the broadband version DHRbb(θs) involves the spectral

integration of the DHR weighted by the downwelling solar irradiance. Irradiances are

computed using a hyperspectral version of the doubling and adding model applied in sec-

tion 5.4.1.3 (Cairns et al. [2003]). Spectral DHR’s are created using linear interpolations

of Ross-Li kernel weights, f , determined in section 5.4.1.3. This is then normalized by the

total downwelling solar irradiance appropriate for a particular day at all wavelengths

DHRbb(θs) =

∫ λmax

λmin

Eo(λ)t(λ)DHR(λ, θs)dλ

∫ λmax

λmin

Eo(λ)t(λ)dλ

(5.17)

where Eo(λ) is the exo-atmospheric irradiance and t(λ) is the direct solar transmittance.

Spectrally dependent DHR(λ) is created by linear interpolation of kernel weights and



163

application of the DHR parameterization described in Lucht et al. [2000b].

DHR(λ, θs) =

fiso(λ) + fvol(λ)g0,vol(λ) + fgeo(λ)g0,geo(λ)+

θ2 [fvol(λ)g1,vol(λ) + fgeo(λ)g1,geo(λ)] +

θ3 [fvol(λ)g2,vol(λ) + fgeo(λ)g2,geo(λ)]

(5.18)

g parameters from Lucht et al. [2000b] are in table 5.2. BHRbb is computed in a similar

fashion, where spectrally interpolated kernel weights are applied to Lucht et al. [2000b]’s

BHR parameterization. This parameterization is then integrated in a weighted manner.

BHRbb =

∫ λmax

λmin

Eo(λ)t(λ)BHR(λ)dλ

∫ λmax

λmin

Eo(λ)t(λ)dλ

(5.19)

BHR(λ) = fiso(λ)wiso + fvol(λ)wvol(λ) + fgeo(λ)wgeo(λ) (5.20)

For consistency, broadband BHRbb and DHRbb are computed using the same method for

both RSP and MODIS, and are thus integrated over the same spectral range (400nm to

2500nm). It should be noted that this is not the same spectral range as the standard MODIS

broadband albedo products, but it matches the range of BEFLUX radiometers. We also

analyzed the radiative effect of albedo beyond this spectral range using the hyperspectral

doubling and adding model from Cairns et al. [2003] and estimates of surface albedo by

extrapolating the RSP ’vegetation’ and ’soil’ data from within the measured spectral range.

We found that the relative error in estimation of DHR (of the entire radiative system) us-

ing our restricted spectral range was 3.0% for ’vegetation’ and 0.7% for the darker ’soil’

data. The absolute bias for a surface with an albedo of 0.2 is 0.0058 and 0.0014 for ’vegeta-

tion’ and ’soil’, respectively. This estimation accounted for Rayleigh (molecular) scattering

alone. Aerosols and absorbing gases would have the effect of further reducing the out of

band radiance, and thus decreasing the above errors.
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Table 5.2: Lucht et al. [2000b] DHR parameters

Isotropic Volumetric Geometric
g0 1.0 -0.007574 -1.284909
g1 0 -0.070987 -0.166314
g2 0 0.307588 0.041840
w 1.0 0.189184 -1.377622

5.4.2 MODIS data preparation

The newly reprocessed (Collection V005) MODIS BRDF/Albedo product is now being

produced from Aqua and Terra data every eight days at an increased 500-meter spatial res-

olution. The spectral product provides semi-empirical, kernel-driven anisotropy models

which are retrieved from all clear-sky, high quality, atmospherically-corrected surface re-

flectances available over a 16-day period. This is done by fitting multiple observations to

the Ross-Li BRDF kernel models, as described in section 5.3.2 and in Lucht et al. [2000b].

The resulting BRDF parameters (fiso , fvol and fgeo) are then used to compute integrated

albedos for MODIS spectral bands 1-6 (centered at 0.648, 0.858, 0.470, 0.555, 1.240, and

1.640um respectively). Collection V005 MODIS / Terra+Aqua BRDF / Albedo products

are Validated Stage 1, meaning that accuracy is estimated using a small number of inde-

pendent measurements obtained from selected locations at particular times

MODIS data utilized in this study was taken from a 0.4◦×0.4◦ box surrounding the SGP

CF. This geographic area was selected to encompass both the SGP CF and RSP overflight

locations. Direct pixel to pixel comparisons were not performed due to the vast differences

in spatial (and temporal) resolution between the terrestrial BEFLUX, airborne RSP and

orbital MODIS (Liang et al. [2002]). Figure 5.4 shows the spatial context of the three data-

sets. An attempt was made to identify ’vegetation’ and ’soil’ classes as was done in section

5.4.1.2 for the RSP data. However, since band spectral sensitivities and the spatial scale

of MODIS and RSP are different, this is impossible to reproduce exactly. The NDVI was

calculated (equation 5.24) for each pixel, where the MODIS BHR(859nm) was used in
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Figure 5.4: MODIS nadir reflectances from September 16th, 2005, overlaid with RSP data
and SGP CF locations. MODIS data are a composite of reflectance from band 1 (645nm)
in the red channel, band 2 (859nm) in the green channel, and band 3 (469nm) in the red
channel. Data were scaled to give an intuitive impression of vegetation or bare soil dom-
inance in each pixel. The black box identifies the region of MODIS data utilized in this
study. RSP flight data locations are indicated in blue (’vegetation’ class) or red (’soil’ class)
for both JRF03 (left) and JRF04 (right). The SGP CF is indicated with the black and white
square.

place of LNIR and BHR(645nm) was used in place of Lred. The distribution of the result

has a mean NDVI of about 0.5, with a normally distributed, half maximum width of about

0.4. In an attempt to identify pixels that were ’pure’ with respect to ground surface type,

those with NDVI values less than 0.3 were classified as ’soil’ pixels, while those with NDVI

values greater than 0.7 were identified as ’vegetation’ pixels. Since these class types are

not defined the same way as RSP classes and are of a different spatial scale, they cannot be

definitively compared. However, this classification is representative of the spectral diversity

present in the MODIS data.
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5.4.3 BEFLUX data preparation

BEFLUX ground radiometer data were prepared in the same manner as Yang [2006]. Irra-

diances measured by the BEFLUX radiometers are a combination of DHRbb and BHRbb,

which must be separated prior to comparisons with MODIS or RSP data. This is done by

measuring the albedo when the surface is illuminated diffusely (when it is cloudy), so the

measured albedo is BHRbb alone. The BHRbb is then removed from the observations for

cloud free days to compute the DHRbb.

The BEFLUX BHRbb was calculated using data from the month of September, 2005.

This length of time was chosen because it is long enough to have cloudy days for compu-

tation of BHRbb, yet short enough that changes in surface properties can be ignored. Prior

to BHRbb calculation, data were screened to remove poor quality irradiances (as identi-

fied by Quality Control values), albedos greater than 0.4, and measurements made when

the upwelling radiometers observed irradiances less than 10 W/m2 (which is the instru-

ment uncertainty). Measurements where the solar zenith angle was greater than 80◦ were

removed as an additional screening that was not part of Yang [2006]. Cloudy days were

identified where the ratio of downwelling diffuse irradiance to total hemispheric down-

welling irradiance was greater than 0.99. For September, 2005, 1901 measurements fit this

criteria, which is just over 10% of the total number of measurements passing the initial

screening criteria. The average BHRbb from BEFLUX is 0.185, with a standard deviation

of 0.012. BHRbb was invariant for the month of September, 2005, as a linear fit with re-

spect to time increases by only 0.002 during the month. As an aside, this helps confirm

that the sixteen day period over which MODIS gathered measurements to form its BRDF

estimate was free of temporal variability that could add to the error in these measurements,

at least in the area immediately surrounding the BEFLUX radiometers. It should also be

noted that the effective BHR observed by the BEFLUX radiometers under cloudy skies is

not necessarily the same as that for clear skies. This is due to the different effective regions

of influence that contribute to the measurements from multiple scattering between the sur-

face and the atmosphere or cloud. Thus, although the spatial domain that contributes to the
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DHR estimated from BEFLUX is primarily determined by the height and location of the

mount from which the downward looking measurements are made, the corrections used in

equation 5.21 have a much more poorly defined spatial domain.

DHRbb is found by removing the effect of BHRbb from the ratio of upwelling to down-

welling irradiances in cloud-free conditions. Specifically, this uses the expression

DHRbb(θs) =
Uall(θs)−BHRbbDdiff (θs)

Ddir(θs)
(5.21)

where Uall(θs) is the total hemispherical upwelling irradiance measured by the radiometer,

Ddir(θs) is the direct downwelling irradiance, and Ddiff (θs) is the diffuse downwelling

irradiance. We performed this calculation for data from September 16th, 2005. Total Sky

Imager (TSI) derived products [Long et al., 2001] indicate that there were small (less than

10%) amounts of cloud cover during the morning and for part of the late afternoon. Data

whose opaque cloud sky percentage was greater than 1% or whose thin cloud sky percent-

age was greater then 5% were removed. Unlike Yang [2006], we did not fit a polynomial

to the computed DHRbb, as we have a much smaller set of data and do not want to intro-

duce fitting artifacts. The results were instead compared directly to MODIS, RSP and the

parameterized MODIS data.

5.4.4 Albedo parameterizations

The final component of this multiple instrument comparison is a parameterization of MODIS

albedos suitable for use in climate models. Wang et al. [2007] proposed a parameterization

based only upon the MODIS reflectance factor at θs = 60◦ and two vegetation type depen-

dent parameters. This parameterization was also tested in Yang [2006]. The Wang et al.

[2007] parameterization is motivated by the polynomial fit to the Ross-Li BRDF kernels

presented in equation 46 of Lucht et al. [2000b], and has the following form (equation 7 in

Wang et al. [2007])
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DHR(θs, Λ) = DHR(60◦, Λ) (1 + B1(Λ) [g1(θs)− g1(60◦)] + B2(Λ) [g2(θs)− g2(60◦)])

(5.22)

Here, g1 and g2 are the Ross-Li BRDF kernel polynomial fit coefficients from table 1 in

Lucht et al. [2000b], B1 and B2 are the ratios fvol/DHR(60◦, Λ) and fgeo/DHR(60◦, Λ),

respectively. Wang et al. [2007] used global MODIS measurements to determine median

DHR(60◦, Λ) and B values for about a dozen surface vegetation types. He did so using

spectrally broad, visible (VIS) and Near-InfraRed (NIR) spectral bands. We compared

to the ’Grassland’ and ’Cropland’ vegetation types, as they are most consistent with the

observed surface at the SGP CF. Table 5.3 lists parameter values for those vegetation types,

along with the kernel values they imply.

Table 5.3: Wang et al. [2007] albedo parameters

Vegetation type: Type 10: Grassland Type 12: Cropland
DHR(60◦, ΛV IS) : 0.099 0.066
DHR(60◦, ΛNIR) : 0.295 0.286

B1 : 0.57 0.62
B2 : 0.12 0.13

fgeo(ΛV IS) : 0.056 0.041
fvol(ΛV IS) : 0.012 0.009
fgeo(ΛNIR) : 0.168 0.177
fvol(ΛNIR) : 0.035 0.037

5.5 Results

5.5.1 RSP model fitting results

The first, and most direct way of comparing BRDF estimation results from RSP and

MODIS is to examine the approximated BRDF retrievals. As described in equation 5.1,

BRDF is a function of spectra (λ), solar and viewing zenith angles (θs and θv), and the rel-
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Figure 5.5: BRDF approximation results for MODIS (first and third rows) and RSP (second
and fourth rows) during ALIVE. These results are for the ’all’ surface type class with a solar
zenith angle of 30◦.

ative azimuth angle (φ = φv − φs, an assumption made in most literature). Because of the

high dimensionality, we present a ’slice’ of the BRDF estimated for the ’all’ surface class

for RSP and MODIS in figure 5.5. Generally speaking, the magnitude and BRDF angu-

lar dependence for RSP and MODIS are similar. Largest differences are for the longest

wavelength values, where the band locations for RSP and MODIS have the greatest dis-

similarities. Better agreement in the visible bands could also be due to their use in the

classification routines described previously, as divergent longer wavelength reflectances

are not used to identify a class.
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5.5.2 BHR (white-sky albedo)

Figure 5.6 is a plot of the spectral and broadband BHR values for RSP and MODIS ’all’,

’soil’ and ’vegetation’ classes. Spectral dependence is very similar to the magnitude of

isotropic kernel values in figure 5.5. BHR peaks are evident in the ’vegetation’ class in the

green and NIR bands, while ’soil’ class BHR values are greatest at longer wavelengths.

For ’vegetation’ and ’soil’ classes, RSP and MODIS BHR agree best in the visible wave-

length bands that were used to classify the data, and generally agree within a BHR of 0.05

at other wavelengths. Broadband BHR comparisons show similar levels of agreement,

with the difference between RSP and MODIS for the ’all’ class of 0.023. The RSP ’all’

BHRbb is the closest match to the BEFLUX BHR, with a BHRbb 0.0001 greater than that

derived from BEFLUX. Interestingly, the best match of spectral BHR between RSP and

MODIS are with the ’all’ classes, with similar spectral bands having differences less than

0.025. Although the ’vegetation’ and ’soil’ classes were derived with the intent of creating

comparable RSP and MODIS albedos, the best agreement is for the average behavior of the

two data sets. This is presumably because spatial averaging reduces the effects of the dif-

ferent spatial resolutions of the two sensors. Table 5.4 contains the tabulated BHR values

displayed in figure 5.6.

5.5.3 DHR (black-sky albedo)

Figure 5.7 is a plot of the DHR for each spectral band and the broadband DHRbb. RSP

vegetation and soil classes are plotted along with vegetation and soil from MODIS. As

expected, DHRbb roughly represents the mean magnitude and shape of the spectral DHR

from which it is created. This is particularly true for longer wavelengths, which were more

heavily weighted in the spectral to broadband conversion due to a combination of higher

exo-atmospheric irradiance, atmospheric transmittance, and surface reflectance. The shape

and spectral variation of the DHR is similar for RSP and MODIS, as we would expect

based on the similarity of the kernel values and the spectral BHR values presented in
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Figure 5.6: RSP (blue lines with diamonds) and MODIS (red lines with diamonds)
BHR(Λ). ’All’ results are on the top left, ’vegetation’ class results on the top right, and
’soil’ class results on the bottom left. Straight horizontal lines represent the broadband
BHRbb, where again RSP is indicated in blue and MODIS in red. The thick black line is
the BEFLUX BHRbb.
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Table 5.4: BHR from RSP, MODIS and the Wang et al. [2007] parameterizations. RSP
’all’, ’vegetation’ and ’soil’ classes are indicated RSP-A, RSP-V and RSP-S, respectively.
Likewise, MODIS ’all’, ’vegetation’ and ’soil’ classes are indicated MOD-A, MOD-V and
MOD-S. Wang et al. [2007] ’grassland’ and ’cropland’ visible and NIR BHR values are
indicated by Wang-G and Wang-C. The final row is the difference between the column
BHRbb and the BEFLUX derived BHRbb = 0.185.

RSP-A RSP-V RSP-S MOD-A MOD-V MOD-S Wang-G Wang-C
410nm 0.033 0.028 0.038
470nm 0.049 0.044 0.051 0.059 0.027 0.092
555nm 0.091 0.093 0.081 0.101 0.065 0.132
650nm 0.108 0.053 0.164
670nm 0.106 0.079 0.144
858nm 0.336 0.364 0.298
865nm 0.317 0.392 0.242
1240nm 0.378 0.394 0.366
1590nm 0.294 0.253 0.327
1640nm 0.313 0.261 0.371
2130nm 0.202 0.111 0.320
2250nm 0.179 0.130 0.255
Visible 0.086 0.045 0.126 0.095 0.068
NIR 0.317 0.319 0.314 0.282 0.271
BB 0.185 0.193 0.177 0.208 0.188 0.227
Diff 0.000 0.008 -0.008 0.023 0.003 0.042
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Figure 5.7: RSP (top panels) and MODIS (bottom panels) DHR(Λ, θs) values. ’Vege-
tation’ results are on the left, ’soil’ class results on the right. DHRbb(θs) is indicated in
black.

figures 5.5 and 5.6.

It is important to note that estimation of the BRDF using the kernel approach may be

unphysical for angles other than those used to estimate the BRDF. Although the DHR cal-

culated directly from the integrals of the BRDF kernels (as given by Lucht et al. [2000b])

remains physical (positive) for the kernel values analyzed here, the underlying BRDF may

actually have negative values for high view or solar zenith angles. Great care should there-

fore be exercised in the use of these kernel estimated BRDF’s at such high (greater than

75◦) angles.

Model inputs require, among other things, the shape of DHR with respect to solar

zenith angle. Yang [2006] expresses this shape by normalizing DHR by its value at

θs = 60◦. Figure 5.8 shows those normalized DHR (nDHR) values for both broadband

and spectral values from the ’vegetation’ and ’soil’ classes of RSP and MODIS. Here, the

broadband nDHR is most similar to the longer wavelength visible or NIR nDHR. This

illustrates the significance of those bands in forming broadband DHR.
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Figure 5.8: RSP (top panels) and MODIS (bottom panels) DHR(Λ, θs) normalized to
DHR(Λ, 60◦). ’Vegetation’ results are on the left, ’soil’ class results on the right.

5.5.4 Remote sensing, ground radiometer and parameterization com-

parison

Perhaps the most important results of this work, figure 5.9, is a comparison of DHR esti-

mates from all RSP and MODIS classes to those derived from BEFLUX ground radiome-

ters and parameterizations from two surface classes of Wang et al. [2007]. BEFLUX data

represent individual measurements on September 16, 2005, where any potentially cloud

contaminated values are removed. Despite the thorough cloud screening, measurements

at the same solar zenith angle (between 33◦ and 55◦) are different for the morning and

afternoon. This variability expresses the magnitude of potential systematic uncertainties,

such as differences due to solar azimuth angle or multiple ground-atmosphere interactions

occurring in different areas adjacent to the radiometers.

While it is impossible to be sure which type of surface class is best to compare with

BEFLUX derived DHR (as discussed in section 5.4.3), it is reasonable to assume that

it should be similar to one of the classes or a mixture of the two, as the small area of
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pasture where the BEFLUX radiometers are located is sampled in both RSP and MODIS

data-sets. Indeed, this is the case for absolute DHR from both RSP and MODIS. The

best matches are the RSP and MODIS ’vegetation’ classes, although other RSP classes

are close as well. Of course, this comparison is limited to solar zenith angles greater than

about 33◦ and less than about 80◦, as this is the range of DHR solar zenith angles derived

from BEFLUX. However, a lack of a comparison beyond this angular range should not

be a significant problem when evaluating kernel based estimates of DHR and BHR. As

mentioned previously, very high solar zenith angles are neither routinely measured nor

energetically important for climate modeling, while the data used to estimate the Ross-

Li kernel values included nadir view angles. Reciprocity of the kernel BRDF’s should

therefore ensure acceptable behavior of the DHR values at small solar zenith angles. The

agreement between RSP predicted and BEFLUX broadband BHR and DHR is excellent

(0.0001 and on average 0.0058 for BHR and DHR, respectively, in the RSP ’all’ class)

over the angular range from 30◦ to 80◦. This indicates the capability of well corrected,

multi-angle, narrowband results to predict the radiative balance at the surface. Although

we have found larger discrepancies with MODIS results, broadband DHR agreement is

still better than 0.0042 for even the most poorly matched surface type (’soil’).

5.5.5 Azimuth angle independence

RSP estimates of the BRDF are aided by the large number and range of view zenith an-

gles of measurement available at one time. However, the results presented here represent

two flights (for the ’vegetation’ and ’all’ classes) or one flight (for the ’soil’ class) and

therefore measurements have a limited range of relative solar - view azimuth angles. Thus,

while BRDF estimation is based on a well sampled meridional plane the number of such

planes is very limited. While it is impossible to fully investigate the consequences of this

azimuth angle measurement limitation without more data, some indication of the potential

variability or uncertainty in BRDF estimates caused by this limitation can be determined

by comparing results from the two flights. Figure 5.10 is a comparison of BRDF estima-
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Figure 5.9: Comparison of broadband (left) and normalized broadband (right) DHR for
BEFLUX ground radiometer data (black), RSP data (blue), MODIS data (red) and the
parameterization from Wang et al. [2007] for ’cropland’ (green) and ’grassland’ (magenta).
For RSP and MODIS, different surface types are indicated by solid lines (’vegetation’),
dashed lines (’soil’) and dotted lines (’all’). Parameterizations for visible wavelengths are
indicated with solid lines, and dashed lines for the NIR.
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Figure 5.10: Differences in BHR and DHR estimated from data restricted to one flight,
and thus one relative solar-view azimuth angle. The plot on the left is the difference be-
tween spectral BHR(Λ) and broadband BHRbb for JRF3 and JRF4 for the ’vegetation’
class. The right side is the same for DHR(Λ, θs) and DHRbb(θs).

tion results for JRF3 (relative solar - view azimuth, φ = 315◦ for forward scans) and JRF4

(relative solar - view azimuth, φ = 156◦ for forward scans) for the ’vegetation’ class.

Comparisons of spectral BHR reveal inter-flight differences equal to or less than 0.07

for angles less than 80◦. The maximum difference is in the 865nm band, which for vegeta-

tion is by far the brightest channel (see figure 5.6). Broadband BHR differences are less

than 0.01, less than most of the spectral BHR differences. It appears that computation of

the broadband BHR removes some of the difference between the flights, which may be

related to differences in the observed vegetation. Spectral DHR shows a similar pattern

as BHR. Maximum differences are about 0.06 at 60◦ for the 865nm band, and increase

with solar zenith angle. At solar zenith angles less than 80◦, the flight to flight DHRbb

difference is about 0.01.
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5.6 Discussion

The foremost purpose of this paper is to evaluate MODIS BRDF estimates. This is done

by comparing MODIS derived BHR and DHR (white and black sky albedos, in MODIS

terminology) to the same values derived from an airborne sensor (RSP) and a group of

ground radiometers (BEFLUX) during September in north-central Oklahoma. This is a

region whose ground cover mainly included grassland and late season or recently harvested

cropland. This location is important because of the presence of the SGP CF, where a

host of atmospheric and radiometric instruments provide a continuous set of validation

data. MODIS overestimates BHRbb with respect to BEFLUX by between 0.003 and 0.042

(depending on the surface class, see table 5.4). The average MODIS DHR deviation (over

all angles less than 80◦) from BEFLUX is 0.018, -0.002 and 0.035 for the ’all’, ’vegetation’

and ’soil’ classes, respectively. Considering that BEFLUX derived DHR has differences

up to 0.01 between measurements with the same solar zenith angle but at different times of

day (morning and evening), we regard the MODIS DHR estimates as successful.

An important component of any validation work is to identify which differences are

due to the data processing necessary to perform the validation, and which represent ac-

tual instrumental differences. In this case, we recognize several processing steps that may

add to or mask actual instrumental differences. Both RSP and MODIS were fit to Ross-Li

BRDF models, and thus are only capable of measuring the types of BRDF that are included

in those models. Another potential source of error is the need to create broadband BHR

and DHR from spectral RSP and MODIS values, in order to compare to naturally broad-

band BEFLUX derived values. This involves interpolating between spectral bands prior

to integration to broadband values, and this interpolation could miss spectral variation in

the BHR or DHR that is included in the broadband values derived from BEFLUX. Fi-

nally, spatial and temporal resolution differences between satellites and point sensors on

the ground are a well known source of error. We have attempted to account for these prob-

lems by separating the data into comparable classes roughly representing vegetated crops

or grassland and bare (recently harvested) soil. MODIS and RSP classes are consistent with
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one another (see figures 5.6, 5.7, 5.8 and 5.9), and closest with the ’all’ classes containing

the entire dataset prior to classification. As figure 5.4 shows, RSP and MODIS data-sets

have a somewhat different spatial extent. So, while the classification techniques for RSP

and MODIS may not be compatible, other aspects of RSP and MODIS data processing

(such as spectral to broadband conversion and model fitting) produce remarkably similar

results. MODIS BHRbb shows a bias with respect to RSP of 0.023, -0.005 and 0.050 for

the ’all’, ’vegetation’ and ’soil’ classes, respectively. Average (with respect to solar zenith

angles less than 80◦) biases for DHRbb between MODIS and RSP are 0.036, 0.006 and

0.076 for the ’all’, ’vegetation’ and ’soil’ classes, respectively. nDHRbb has an average

bias typically an order of magnitude less than absolute DHRbb, indicating that differences

between the instruments are primarily due to differences in the absolute magnitude of their

estimates. MODIS-RSP comparisons of individual spectral bands show the same small

bias for both DHR and nDHR.

This research began as an effort to investigate some of the differences between BE-

FLUX radiometers and MODIS parameterizations identified by Yang [2006]. We imple-

mented the novel DHR BEFLUX computation technique described in that paper, but did

so for the much more limited time range of the ALIVE campaign. Yang [2006] compared

nDHR to parameterizations described by Wang et al. [2007] and Liang et al. [2005], and

found the BEFLUX derived values to be larger than both parameterizations at solar zenith

angles greater than 80◦, and more troubling, smaller than parameterizations at angles less

than 35◦. Yang’s comparison utilized a third order polynomial fit because its similarity to

an approximation given in Schaaf et al. [2002]. However, unlike the standard third-order

polynomial that Yang used, the polynomial in Schaaf et al. [2002] is restricted to have a

zero coefficient on the first-order term. Figure 5.11 presents the difference between these

two fitting routines, where we fit both types of polynomials to our BEFLUX data. Schaaf’s

polynomial fit clearly matches RSP and MODIS DHR and nDHR, while the Yang poly-

nomial diverges in a similar manner to that presented in Yang [2006]. Thus, the biases that

were identified in Yang [2006] are both beyond the solar zenith angle range of the reference
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Figure 5.11: BEFLUX derived DHR (left) and nDHR (right) and the corresponding poly-
nomial fits to our subset of BEFLUX data, as described by Yang [2006] (green) and Schaaf
et al. [2002] (blue). Original BEFLUX derived DHR are in black. For comparison, the
’all’ classes of RSP (magenta) and MODIS (red) are also included.
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dataset and most likely due to the choice of the data fit, rather than the data itself.

The albedo parameterization presented in Wang et al. [2007] is also included in the

comparison in figure 5.9. Wang’s parameterization, described in section 5.4.4, is an attempt

to reduce the number of parameters describing MODIS albedo from three for each band to

two each for broad visible and NIR bands (which are specified for various surface types).

Although these broad visible and NIR channels cannot be compared directly to broadband

BEFLUX DHR, the Wang et al. [2007] nDHR is spectrally invariant, and thus can be

compared to BEFLUX derived nDHR. Figure 5.9 shows that both of the selected surfaces

(grass and cropland) produce nDHR with slightly shallower slopes than BEFLUX derived

nDHR. Thus, Wang’s parameterizations show slightly smaller variation in DHR as a

function of solar zenith angle compared to BEFLUX. Average (for solar zenith angle less

than 80◦) biases for nDHR are between 0.022 and 0.028, depending on the land surface

type selected for the parameterization.

5.7 Conclusion

Generally speaking, this validation shows that there is good agreement between MODIS,

RSP and BEFLUX ground radiometer derived albedos, at least for the conditions of the

ALIVE experiment at the SGP CF. MODIS, which is capable of producing global BRDF

estimates, produces DHR and BHR (’black-sky’ and ’white-sky’, albedos, respectively)

that agree with aircraft measurements from RSP. RSP has a higher spatial and temporal

resolution than MODIS, and its data are atmospherically corrected with more sophisticated

algorithms, yet differences between the two are minimal. It is important to note that RSP

used the same Ross-Li BRDF models employed by MODIS, so some potential instrumental

differences may be masked by this similarity. However, model fitting results are robust and

physically realistic. RSP and MODIS also agree well with DHR and BHR derived from

the BEFLUX ground radiometers, whose methodology is quite different than the BRDF

model fitting routines employed by the remote sensing instruments. A potential source
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of non-instrumental comparison error are the methods used to convert spectral DHR and

BHR to broadband values. In our case we were required to interpolate spectral albedos

and model the ground-atmosphere interaction. Previously identified differences between

BEFLUX ground radiometers and MODIS were shown to be for DHR in solar zenith

angles beyond the range of available comparison angles and were most likely due to the

choice of the type of polynomial fit to the data, rather than instrumental effects in the data

itself.

This validation effort is hindered by the small quantity of data available for comparison.

Cloud free, low altitude RSP measurements were limited to a single day (September 16,

2005) during the ALIVE campaign. RSP serves as an airborne prototype to the Aerosol

Polarimetery Sensor (APS), due to be launched as part of the NASA Glory mission in 2008.

APS is not an imaging instrument and will not be able to create global BRDF estimates as

like MODIS. However, the rapid angular scanning and accurate atmospheric correction of

APS means that it is an ideal platform for validation of BRDF estimates from MODIS

and other instruments. Pending a successful launch, Glory will join the NASA ’A-train’

orbit, and APS will begin gathering a validation dataset much, much larger than what was

available for the work in this paper. The methods used here could become part of routine

BRDF remote sensing validation effort.

5.8 Appendix

5.8.1 Correction for gas absorption

Prior to assessing ground reflectance, water vapor, ozone and NO2 absorption effects were

removed from the direct solar beam. Water vapor was measured at SGP CF with a MWR,

while ozone and NO2 measurements were provided by the TOMS and SCIAMACHY or-

bital instruments, respectively. Absorption coefficients were computed using the spectral

sensitivity of each RSP band, and applied to RSP measurements as follows:
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Ic = I
(
e−M(KO3xO3+KNO2xNO2)−α[wM ]β)

)−1

(5.23)

where I and Ic are the original and corrected radiances, respectively. KO3 is the ozone

absorption coefficient, xO3 is the ozone quantity in centimeters per atmosphere, KNO2 is

the NO2 absorption coefficient, xNO2 is the quantity of NO2 in parts per billion, w is the

column water vapor, in centimeters, and parameters α and β define the optical depth due to

water vapor. α, β, Koz and KNO2 are given in table 5.5. M is the airmass, which defines the

length of the atmospheric path from the sun to the Earth surface and is well approximated

for the solar zenith angles encountered here by M = cos(θs)−1. The use of the correction

procedure defined by equation 5.23 is justified for ozone and nitrogen dioxide by the fact

that they absorb light primarily in the stratosphere, above most atmospheric scattering. It

is acceptable for water vapor because this only affects RSP bands at 1590 and 2250nm, for

which single scattering is a valid approximation of the effects of aerosols and molecules.

Gas quantities for the day of our experiment were: 0.285 Dobson Units of Ozone, 0.74 ppb

of NO2, and precipitable water vapor between 1.237 and 1.498cm, depending on the time

of day.

Table 5.5: Gas absorption parameters

Band Wavelength KO3 KNO2 α β
1 410 0.000278 0.012860 0.00000 1.000000
2 469 0.010035 0.008135 0.00000 1.000000
3 555 0.096960 0.001827 0.00026 0.990068
4 670 0.044982 0.000144 0.00053 0.958742
5 864 0.002060 0.000000 0.00061 0.953774
7 1589 0.000000 0.000000 0.00251 0.645347
9 2264 0.000000 0.000000 0.01141 0.739948
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5.8.2 Vegetation Indicies

The canonical method for assessing surface vegetation content is the Normalized Differ-

ence Vegetation Index (NDVI):

NDV I =
LNIR − Lred

LNIR + Lred
(5.24)

where L is the radiance detected by a red or near-infra red (NIR) sensor. Vegetation has a

low reflectance at red wavelengths, and much higher reflectance in the NIR, while soils and

other non-vegetated surfaces have much smaller spectral contrast between the red and NIR.

NDVI has been used for years to assess vegetation health and cover from space, although

it is important to note that it is simply an index not an actual physical parameter. How-

ever, there is the possibility that the spectral dependence of the aerosol optical properties

modifies LNIR and Lred in a manner that affects NDVI [Kaufman and Tanre, 1992]. We

therefore used Kaufman and Tanré’s Atmospherically Resistant Vegetation Index (ARVI)

which is less sensitive to the effects of atmospheric aerosols [Kaufman and Tanre, 1992].

ARVI uses a channel at a blue wavelength in order to correct for atmospheric effects. It is

defined in terms of normalized reflectances as:

ARV I =
ρNIR − ρrb

ρNIR + ρrb

ρrb = ρred − γ(ρblue − ρred)

(5.25)

where γ is a parameter that depends on the aerosol type. We used a value of γ = 0.9

as suggested by Kaufman and Tanré for continental aerosols. RSP channels 2 (470nm), 4

(670nm) and 5 (865nm) were used for ρblue, ρred, and ρNIR, respectively.
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Chapter 6

Conclusion

Accurate global climate simulations are essential if we are to understand, predict and adapt

to climate change. Despite recent advances, historical simulations of the climate record

by models and predictions of future change still have considerable uncertainty, much of it

associated with the radiative forcing imposed by atmospheric aerosols. Aerosols, which

are suspended particulate matter, interact with the global climate directly by scattering and

absorbing radiation, or indirectly by altering the optical properties and lifetime of clouds.

Unlike greenhouse gases, they are short lived and have a variety of chemical and physi-

cal compositions, sources and sinks. Climate model uncertainties are primarily associated

with aerosol radiative forcing and cloud feedbacks. A substantial amount of the uncer-

tainty associated with the aerosol radiative forcing is caused by a lack of consistent and

accurate observations, which require satellite remote sensing to provide global coverage.

The current suite of satellite observations are unable to capture all the necessary aerosol

descriptive parameters, but scanning instruments that utilize polarimetry at both visible

and NIR wavelengths offer the possibility to do so. This thesis is an investigation of the

potential for aerosol optical property retrieval with the Aerosol Polarimetry Sensor (APS)

on the upcoming NASA Glory mission, and its airborne prototype, the Research Scanning

Polarimeter (RSP). These instruments represent a substantial advance over previous Earth

observing polarization measurements because of their wide spectral range, high polarimet-

ric accuracy, and high angular resolution.
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While the APS has yet to be launched, its retrieval capabilities for aerosol optical prop-

erties in typical cloudless scenes over land and ocean have been investigated using RSP data

in various publications, including Chowdhary [1999], Chowdhary et al. [2001], Chowdhary

et al. [2002], Cairns [2003], Chowdhary et al. [2005a], Cairns et al. [2009] and Waquet

et al. [2009a]. This thesis is a continuation of that work, where the utility of scanning

polarimeter observations is investigated for more complex scenes, such as observations

of extremely optically thick, absorbing, and vertically stratified biomass burning aerosols

(chapter 3) and aerosols suspended above marine stratocumulus clouds (chapter 4). This

used the Doubling and Adding Optimization (DAO) optimization algorithm, which was

created to extract aerosol and cloud information from RSP scenes. DAO is very flexible,

and retrieves both aerosol parameters and their uncertainty. It is therefore an ideal tool

for investigating the remote sensing capability of scanning polarimeters. A procedure to

determine the best optimization strategy for various types of scenes has been established

in this thesis. This procedure, and the software that was created as part of it, will be used

for future scanning polarimeter research. An additional component of this thesis was an

investigation of the surface reflectance validation capability of scanning polarimeters for

instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS), which

has coarser angular resolution but better spatial coverage. While DAO was not used di-

rectly as part of this work, it did involve the use of the same radiative transfer model with

a simpler iteration scheme to fit RSP observations.

This thesis is a collection of three papers intended for peer-reviewed publication. The

main conclusions of each paper are described below.

Chapter 3, which is ready to submit to the journal Atmospheric Chemistry and Physics,

was both a test of aerosol optical property retrieval for extremely optically thick plumes,

and of the utility of merger with data from active Lidar instruments. Optimization was per-

formed for a series of RSP observations using Lidar data, then repeated without Lidar data

(which included aerosol layer heights and optical thicknesses). We found that all scenes

with Lidar data compared well to in situ observations, while about half of the scenes with-
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out Lidar data did not converge to a solution that matched the in situ observations. This

anomalous convergence was not due to the lack of information about aerosol layer heights,

but because the Lidar provided an accurate initial estimate of aerosol optical depth. Correct

initial optical depth values ensured that the optimization did not find a false minimum, but

converged to an aerosol type similar to what was observed by in situ measurements of the

scene. Correctly and incorrectly retrieved aerosol types differed in size and quantity of ab-

sorption, highlighting the difficulty of observations of optically thick and absorbing plumes

such as these, and the value of appropriate initial values provided by external sources such

as a lidar. Furthermore, aircraft geometry, specifically pitch angle, was identified as a sig-

nificant potential source of retrieval error in this paper.

Chapter 4 tested the ability of RSP and APS to retrieve optical properties of scenes

where aerosols are lofted above clouds (AAC). This was tested both with simulations and

with observations of a scene with mixed urban/smoke aerosols lofted above a marine stra-

tocumulus cloud. Provided the cloud top height is known, aerosol and cloud droplet size

distribution are retrievable, along with aerosol optical depth. Uncertainties in these values

were within climate model accuracy requirements. Reasonable aerosol refractive indices

were found, but their assessed uncertainties were very large. Sensitivity studies show that

retrieval uncertainties for all parameters except cloud droplet size distribution decrease as

aerosol optical depth increases, but that complex refractive index uncertainty meets accu-

racy requirements only for very large optical depths. Despite these limitations, this tech-

nique will extend satellite observations to a category of aerosols, AAC, that previously were

unobservable by passive instruments. This chapter will be submitted soon to Atmospheric

Chemistry and Physics.

Chapter 5 is a validation of the ability of the MODIS instrument to systematically

retrieve surface reflectance using data from the RSP. Surface reflectance, represented by

the bidirectional reflectance distribution function (BRDF), can be robustly estimated by the

RSP because of that instrument’s high spatial and angular resolution, view angle range, and

accurate atmospheric correction. MODIS makes systematic global observations, but has
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much lower spatial resolution, limited angular sampling and much simpler atmospheric cor-

rection algorithms. The RSP observations can therefore be used to validate the MODIS es-

timates of surface BRDF, and the APS, when it is launched, can regularly validate MODIS

surface reflectance within its narrow swath, since it will be launched into the ’A-train’

orbit, which contains one of the two MODIS instruments. Additionally, the dependence

of the surface albedo on solar illumination angle is of particular interest for climate mod-

els, which was also evaluated in this chapter using simultaneous surface observations. This

chapter was published in the Journal of Geophysical Research in 2008 (Knobelspiesse et al.

[2008]).

6.1 Future work

Much of the motivation for this thesis is the upcoming launch of the APS instrument and

the anticipated future use of similar polarimeters. The Doubling and Adding Optimization

(DAO) algorithm, which has the capability to determine atmospheric optical properties and

quantify their uncertainties, is an ideal tool to investigate retrieval methods. Based on the

analyses described in chapters 3 and 4, I have developed a procedure to systematically

investigate retrieval capability using DAO and the radiative transfer model that forms its

core. This utilizes both simulated and observed data, along with in situ measurements, if

available. This procedure is appropriate for future investigations of scanning polarimeter

capability, and is briefly described below.

1. Simulation Investigation begins by first simulating the anticipated observation. Se-

lect a reasonable aerosol (and if applicable, cloud or surface) scene, and create sim-

ulated observations for a variety of optical depths using the radiative transfer model

that is part of DAO. As in section 4.3, compute the Jacobian sensitivity matrix for

each of these simulations. Given the observation error covariance matrix, compute

the retrieval error covariance matrix (equation 4.8). This step expresses the parameter

sensitivity for the given scene, and can be used to determine the value of improved
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measurement accuracy and pointing knowledge. Further information can be found

in the Shannon information content (equation 3.18) which is a scalar value indicat-

ing the information gained during measurement and optimization. This is useful to

compare various retrieval strategies, especially if the simulated retrieval error covari-

ance matrices are not obviously distinct. Finally, the error correlation matrix, which

is related to the retrieval error covariance matrix (equation 4.10), can be used to de-

termine relationships between retrieved parameters. All of this information is used

to determine a retrieval strategy, where tradeoffs between observations and their un-

certainties are used to determine which parameters to retrieve and which to assume

based on climatologies or external information.

2. Optimization Test the optimization strategy determined above using data collected

during a real scene. If possible, use a scene where several observations have been

made under similar conditions. The variability in retrieved parameters can be com-

pared to uncertainty estimates (as in section 5.5) to help identify if the latter are real-

istic. Retrieval uncertainties, correlation and information content can be compared to

the simulated values, which will indicate whether the information used to determine

the optimization strategy was coherent with reality. If necessary, the simulation or

optimization steps can be repeated in light of these comparisons. Chapters 3 and 4

both present scene optimizations.

3. Validation If in situ data are available, comparisons can be made between these

observations and optimization results. Examples of this are in sections 3.3 and 4.4.3

4. Forward model testing The optimization Jacobian matrix can be used to investigate

the impact of errors in model assumptions by perturbing individual assumptions in

the forward model, recomputing, and comparing the results to the optimized model

results. The Jacobian is used to project this difference into parameter space. This

establishes the importance of various model assumptions, and identifies which must

be chosen with the most care. For an example of this, see section 4.4.4
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5. Determine systematic retrieval strategy The above steps are used to identify a sys-

tematic retrieval strategy for instruments such as APS. The retrieval strategy should

be universal, and not specifically require the use of DAO, which is not optimized for

speed. The design of future instruments can also rely on the sensitivities, strengths,

and weaknesses revealed above.

The steps outlined above provide a plan for future investigations. For example, these

steps will be followed in my proposed postdoctoral research, which is an investigation of

the feasibility of simultaneous retrieval of aerosol and cloud properties for pixels contains

both cloud covered and cloud free regions. While the difficulty of retrievals such as this is

obviously higher than for pixels containing clouds alone, or an entirely cloud free scene,

the simulation and testing strategy outlined above can illustrate what information can be

gleaned from this type of scene.

This research could be extended and continued in many ways, which are briefly de-

scribed here. Some of this research involves increasing the capability of DAO, while others

involve assessment of new scene types and data analysis. Most of these items will take

considerable effort to implement, and are presented merely to show the potential direction

of this research in the next few years.

• Create scene Look up Tables Climatologies of aerosol properties and ancillary in-

formation about the scene were used in this research to identify the initial parameter

values used during optimization. Since this requires human intervention, this is not

feasible for systematic aerosol retrievals. A more automated and objective method

uses a Look up Table (LUT), composed of simulations of a wide variety of aerosol

optical properties and optical depths. Rather than selecting initial optimization val-

ues by hand, the parameters of the LUT scene most similar to observations are used

as initial optimization values. Creating the LUT requires considerable computing

resources, which is one of the reasons it was not done for this research. If Jacobian

matrices are also computed with each LUT scene, the synthetic uncertainty can be

determined and more accurate interpolation between LUT entries can be performed.
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• Error correlation The error correlation matrix that was used in chapters 3 and 4

assumed that there is no correlation between observations. While this is an assump-

tion that has also been made for simplicity in other publications (such as Lebsock

et al. [2007] and Waquet et al. [2009a]), the reality of observations with high angular

resolution is that they have a large degree of correlation. For various computational

reasons (the MPFIT Levenberg-Marquardt implementation in DAO does not easily

allow for correlated errors), this was not done for this research, but it is a subject wor-

thy of investigation, particularly for homogeneous, clear sky scenes where the angle

to angle relative accuracy of the observations can be used to improve the accuracy of

microphysical retrievals.

• Improve the radiative transfer model The radiative transfer model that forms the

core of DAO is, like any model, highly simplified. There are various ways to improve

the model and add to its range of capabilities. One of the most useful improvements

would be include a database of calculations of single scattering by nonspherical par-

ticles. Methods exist to do this (Mishchenko and Travis [1998], Mishchenko [2000],

Dubovik et al. [2006]), and this would be a matter of integrating preexisting software

into DAO.

• Surface polarized reflectance Chapter 5 involved the use of highly accurate surface

reflectances to validate MODIS observations. Polarized surface reflectance was also

collected with this data, but has yet to be analyzed and presented. These data are ideal

to identify the validity of RSP and APS assumptions about the spectral dependence

of surface polarized reflectance, and can be used to identify the potential for error

that should be added to the error correlation matrix.

• Add ocean optics model to DAO An accurate and well validated model has been cre-

ated to simulate in water radiative transfer for use with RSP and APS data (Chowd-

hary [1999], Chowdhary et al. [2001], Chowdhary et al. [2002], Chowdhary et al.

[2005a], Chowdhary et al. [2005b], and Chowdhary et al. [2006]). However, this
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model is not currently used as part of an optimization technique. Coupling it with

the DAO radiative transfer model would be a powerful extension of capability over

water bodies.

• Allow for optimization of surface parameters The current implementation of the

DAO radiative transfer model first computes surface reflectance, which is then used

by the doubling and adding component of the model to simulate observations. Sur-

face reflectance is only computed during the first radiative transfer step, which means

that surface reflectance parameters cannot be optimized. Adding this capability

would allow us to investigate simultaneous retrieval of aerosol properties and sur-

face total reflectance. As we can see in chapter 5, most of the spectral variability

inherent in surface reflectance is expressed in an isotropic manner, while the angular

shape of the BRDF is nearly spectrally invariant. This feature could be used to add

total reflectance observations to the measurement vector and possibly increase the

information content available in a scene. In fact, this feature of surface reflectance

is used in the aerosol retrieval algorithms of multi-angle instruments that are not

sensitive to polarization, such as the Advanced Along-Track Scanning Radiometer

(A)ATSR, (Curier et al. [2009], Grey and North [2009]) and Multi-angle Imaging

SpectroRadiometer, MISR (Hu et al. [1999], Martonchik et al. [2002]).

• Analytic Jacobians The results of a doubling and adding radiative transfer model

calculation include all the internal fields required to calculate perturbations of the

radiation field with respect to any parameter, analogous to the adjoint method. The

advantage of the doubling and adding method for calculating Jacobians for multi-

angle data is that only one forward model calculation is required, rather than an

additional calculation for every pseudo-source (viewing geometry) which is required

for other adjoint methods (Hasekamp and Landgraf [2007]). This means that the

use of analytical Jacobians can reduce the time for each iteration in a Levenberg-

Marquardt search by an order of magnitude (for 10 parameters) and I will implement
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this approach to the calculation of Jacobian in a future implementation of the DAO

software.

There is a wealth of data that have been gathered by scanning polarimeters, which we

are still learning to analyze. In fact, since the most recent field campaign used in this thesis

(ARCTAS, which was in the summer of 2008), there have been RSP field campaigns in

the central valley of California, central Oklahoma, the Birmingham metropolitan area in

Alabama, over the Gulf of Mexico, and in Bermuda. With the launch of APS, the field

of polarimetery will be enriched by copious volumes of data, so the future holds much

promise for further developments.
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Chapter 7

Symbols and Acronyms

Symbol Description, with units if applicable
a EM wave amplitude
a1 Phase matrix element P1,1

a2 Phase matrix element P2,2

a3 Phase matrix element P3,3

a4 Phase matrix element P4,4

aj Lorenz-Mie scattering coefficient of the jth order
b Aerosol backscatter coefficient [km−1sr−1]
b1 Phase matrix element P1,2 and P2,1

b2 Phase matrix element P3,4 and −P4,3

bj Lorenz-Mie scattering coefficient of the jth order
BHR Bihemispherical reflectance
BHRbb Broadband bihemispherical reflectance
BPRDF Bidirectional polarized reflectance distribution function
BRDF Bidirectional reflectance distribution function
Ca A priori error covariance matrix
Cag Data aggregation error covariance matrix
Ccal Radiometric calibration error covariance matrix
Cp Aircraft pitch error covariance matrix
Cpol Polarization error covariance matrix
CT Measurement error covariance matrix
Cx Retrieval error covariance matrix
Cy Aircraft yaw error covariance matrix
Cε Measurement error covariance matrix
D Levenberg-Marquardt scaling matrix
DHR Directional-hemispherical reflectance
DHRbb Broadband directional-hemispherical reflectance
e Model error vector
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E Irradiance [Wm−2]
El Electric field parallel to the direction of wave propagation

[Wm−2sr−1]
Er Electric field perpendicular to the direction of wave propagation

[Wm−2sr−1]
fiso Isotropic scattering scaling parameter
fgeo Geometric scattering kernel scaling parameter
fpol Polarized reflectance kernel scaling parameter
fvol Volumetric scattering kernel scaling parameter
f Vector of kernel scaling parameters
F Forward model weighted deviation from observation vector
Fo Exo-atmospheric irradiance [Wm−2]
Fp Fresnel polarized reflectance coefficient
g Asymmetry parameter
G Geometric cross sectional area of a particle [m2]
G Radiative transfer forward model
Ga Forward model that returns indirect parameters
h Altitude [m]
Hs Shannon information content
I First element of Stokes polarization vector [Wm−2sr−1]
Ip Linearly polarized radiance [Wm−2sr−1]
I Stokes polarization vector (I = {I, Q, U, V } ) [Wm−2sr−1]
Io Incident Stokes polarization vector, typically (I = {1, 0, 0, 0} )

[Wm−2sr−1]
J Jacobian matrix
k Wavenumber [µm−1]
ka Absorption coefficient [m−1]
ke Extinction coefficient [m−1]
ks Scattering coefficient [m−1]
Kgeo Geometric scattering kernel
KNO2 Nitrogen Dioxide absorption coefficient
KO3 Ozone absorption coefficient
Kpol,v ’Vegetation’ polarized reflectance kernel
Kpol,s ’Soil’ polarized reflectance kernel
Kvol Volumetric scattering kernel
K the 3xN kernel matrix formed from the isotropic, volumetric and

geometric kernels, where N is the number of observations
l̂ Unit vector parallel to the direction of EM radiation propagation
L Radiance [Wm−2sr−1]
m Complex refractive index, m = )(m) + ,(m)
M Airmass
M Multiple scattering convergence matrix
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n Aerosol volume number concentration [µm−2]
NDV I Normalized Difference Vegetation Index
nDHR Normalized directional-hemispherical reflectance
p Parameter vector that, when added to xo, minimizes Φ
P Scattering phase function
P 1

j Legendre polynomial of the jth order
Q Second element of Stokes polarization vector [Wm−2sr−1]
r radius [µm]
re Effective radius [µm]
rg Log-normal aerosol size distribution radius parameter [µm]
ro Solar distance [AU ]
r̂ Unit vector perpendicular to the direction of EM radiation propaga-

tion
RI I reflectance
RQ Q reflectance
RU U reflectance
Rp Polarized reflectance
S Backscatter to extinction ratio [sr]
S1 Lorenz-Mie scattering function
S2 Lorenz-Mie scattering function
t Time [s]
t↓ Direct solar transmittance from the sun to the ground
t↑ Direct solar transmittance from the ground to the observation
T Period [s]
T ↓ Diffuse solar transmittance from the sun to the ground
T ↑ Diffuse solar transmittance from the ground to the observation
U Third element of Stokes polarization vector [Wm−2sr−1]
ve Effective variance
V Fourth element of Stokes polarization vector [Wm−2sr−1]
w Column water vapor [cm]
x Size parameter
xO3 Ozone quantity [cm]
xNO2 Nitrogen Dioxide quantity [ppb]
x Radiative transfer model parameter vector
xo Radiative transfer model initial parameter vector
Y Measurement vector
ẑ Unit vector in the direction of EM radiation propagation
α Ångström exponent
δ Rayleigh scattering anisotropy parameter
∆ Levenberg-Marquardt trust region
∆r Rayleigh scattering anisotropy parameter
∆′

r Rayleigh scattering anisotropy parameter
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θs Solar zenith angle
θv View zenith angle
λ Wavelength [µm]
Λ Narrow spectral band center wavelength
µ cos(θ)
ε EM wave phase
ξ Scattering angle from the incident illumination vector
πj Lorenz-Mie scattering angle dependent coefficient
" Single scattering albedo
ρ Correlation matrix element
ρo Observed reflectance at aircraft altitude
ρa Reflectance to to atmospheric scattering
ρg Surface reflectance
σA Indirectly retrieved parameter standard deviation
σa Extinction cross-section [µm2]
σe Extinction cross-section [µm2]
σg Log-normal aerosol size distribution width parameter
σs Scattering cross-section [µm2]
Σ Function used to calculate multiple surface atmosphere interactions
τ Optical depth
τj Lorenz-Mie scattering angle dependent coefficient
Υ Levenberg-Marquardt parameter
φ Relative azimuth angle (view azimuth - solar azimuth)
φs Solar azimuth angle
φv View azimuth angle
Φ Optimization cost function
χ Polarization angle
ω Angular frequency [s−1]
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Acronym Description
AAC Aerosols Above Clouds
AATS Ames Airborne Tracking Sunphotometer
(A)ATSR Advanced Along-Track Scanning Radiometer
AERONET Aerosol Robotic Network
ALIVE Aerosol Lidar Validation Experiment
AOP Apparent Optical Property
APS Aerosol Polarimetry Sensor
APS Aerodynamic Particle Sizer
ARCTAS Arctic Research of the Composition of the Troposphere from Air-

craft and Satelites
ARVI Aerosol Resistant Vegetation Index
AU Astronomical Unit
AVHRR Advanced Very High Resolution Radiometer
BB Biomass Burning
BC Black Carbon
BEFLUX Best Estimate Radiation Flux
BHR Bihemispherical Reflectance
BrC Brown Carbon
BRDF Bidirectional Reflectance Distribution Function
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization
CAR Cloud Absorption Radiometer
CCN Cloud Condensation Nuclei
CDNC Cloud Droplet Number Concentration
DAO Doubling and Adding Optimization (software)
DCF Direct Climate Forcing
DHR Directional-Hemispherical Reflectance
ECMWF European Centre for Medium Range Weather Forecasts
EM Electromagnetic
GFS Global Forecast System
GISS Goddard Institute for Space Studies
HiGEAR Hawaii Group for Environmental Aerosol Research
HSRL High Spectral Resolution Lidar
HULIS Humic-Like Substances
IDL Interactive Data Language
IFOV Instantaneous Field of View
IMU Inertial Monitoring Unit
IN Ice Nuclei
INTEX Intercontinental Chemical Transport Experiment
IOP Inherent Optical Property
IPCC Intergovernmental Panel on Climate Change
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LLGHG Long Lived GreenHouse Gases
LDMA Long Differential Mobility Analyzer
LUT Look Up Table
LWC Liquid Water Content
MCMA Mexico City Metropolitan Area
MILAGRO Megacity Initiative: Local and Global Research Observations
MISR Multi-angle Imaging Spectro-Radiometer
MODIS Moderate Resolution Imaging Spectroradiometer
MWR Microwave Radiometer
NCEP National Center for Environmental Prediction
nDHR Normalized Directional-Hemispherical Reflectance
NIR Near infra-red
NDVI Normalized Difference Vegetation Index
OC Organic Carbon
OMI Ozone Monitoring Instrument
OPAC Optical Properties of Aerosols and Clouds
PARASOL Polarization and Anisotropy of Reflectance for Atmospheric Sci-

ences coupled with Observations from a Lidar
POLARCAT Polar Study using Aircraft, Remote Sensing, Surface Measurements

and Models of Climate, Chemistry Aerosols and Transport
POLDER Polarization and Directionality of the Earth’s Reflectances
POS Position and Orientation System
RF Radiative Forcing
RSP Research Scanning Polarimeter
SCIAMACHY SCanning Imaging Absorption spectroMeter for Atmospheric Car-

tograpHY
SGP-CF Southern Great Plains Central Facility
SOA Secondary Organic Aerosol
SSFR Solar Spectral Flux Radiometer
SURFRAD Surface Radiation Budget Network
TOMS Total Ozone Mapping Spectrometer
UV Ultra-violet
VOC Volatile Organic Compounds
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J. J. Moré, B. S. Garbow, and K. E. Hillstrom. User Guide for MINPACK-1. Argonne

National Laboratory Report ANL-80-74, Argonne, Ill., 1980.

V.R. Morris. Microwave radiometer (mwr) handbook. Technical Report ARM TR-016,

U.S. Department of Energy, 2006.

J. Mühle, T.J. Lueker, Y. Su, B.R. Miller, K.A. Prather, and R.F. Weiss. Trace gas and

particulate emissions from the 2003 southern California wildfires. J. Geophys. Res., 112

(D3), 2007.



222

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl. Raman lidar

observations of aged siberian and canadian forest fire smoke in the free troposphere over

germany in 2003: Microphysical particle characterization. J. Geophys. Res, 110:17201,

2005.

D. Müller, I. Mattis, A. Ansmann, U. Wandinger, C. Ritter, and D. Kaiser. Multiwavelength

raman lidar observations of particle growth during long-range transport of forest-fire

smoke in the free troposphere. Geophys. Res. Lett., 34(5):L05803, 2007.

G. Myhre. Consistency between satellite-derived and modeled estimates of the direct

aerosol effect. Science, 325(5937):187, 2009.

G. Myhre and A. Myhre. Uncertainties in radiative forcing due to surface albedo changes

caused by land-use changes. Journal of Climate, 16(10):1511–1524, 2003.

F. Nadal and F.-M. Breon. Parameterization of surface polarized reflectance derived from

polder spaceborne measurements. IEEE Trans. Geosci. Remote Sens., 37(3):1709, 1999.

F.E. Nicodemus, National Bureau of Standards, and United States. Geometrical Consider-

ations and Nomenclature for Reflectance. US Dept. of Commerce, National Bureau of

Standards: for sale by the Supt. of Docs., US Govt. Print. Off., 1977.

NT O’Neill, A. Ignatov, BN Holben, and TF Eck. The lognormal distribution as a reference

for reporting aerosol optical depth statistics: Empirical tests using multi-year, multi-site

AERONET sunphotometer data. Geophys. Res. Lett, 27(20):3333–3336, 2000.

N.T. O’Neill, T.F. Eck, B.N. Holben, A. Smirnov, A. Royer, and Z. Li. Optical properties

of boreal forest fire smoke derived from sun photometry. J. Geophys. Res., 107(D11),

2002.

G. Paredes-Miranda, W. P. Arnott, J. L. Jimenez, A. C. Aiken, J. S. Gaffney, and N. A.

Marley. Primary and secondary contributions to aerosol light scattering and absorption



223

in mexico city during the milagro 2006 campaign. Atmos. Chem. Phys., 9(11):3721–

3730, 2009. doi: 10.5194/acp-9-3721-2009.

J.E. Penner, R.J. Charlson, S.E. Schwartz, J.M. Hales, N.S. Laulainen, L. Travis, R. Leifer,

T. Novakov, J. Ogren, and LF Radke. Quantifying and Minimizing Uncertainty of Cli-

mate Forcing by Anthropogenic Aerosols. Bull. Amer. Meteor. Soc., 75:375–400, 1994.

G.W. Petty. A First Course in Atmospheric Radiation. Sundog Publishing, Madison, Wis-

consin, second edition, 2006.

R. Pincus and M.B. Baker. Effect of precipitation on the albedo susceptibility of clouds in

the marine boundary layer. Nature, 1994.

B. Pinty, A. Lattanzio, J.V. Martonchik, M.M. Verstraete, N. Gobron, M. Taberner, J.L.

Widlowski, R.E. Dickinson, and Y. Govaerts. Coupling Diffuse Sky Radiation and Sur-

face Albedo. J. Atmos. Sci., 62(7):2580–2591, 2005.

J.M. Prospero, R.A. Glaccum, and R.T. Nees. Atmospheric transport of soil dust from

Africa to South America. Nature, 289(5798):570–572, 1981.

V. Ramanathan, PJ Crutzen, JT Kiehl, and D. Rosenfeld. Aerosols, climate, and the hydro-

logical cycle. Science, 294(5549):2119, 2001.

J. Redemann, B. Schmid, JA Eilers, R. Kahn, RC Levy, PB Russell, JM Livingston,

PV Hobbs, WL Smith, and BN Holben. Suborbital measurements of spectral aerosol

optical depth and its variability at subsatellite grid scales in support of CLAMS 2001. J.

Atmos. Sci., 62(4):993–1007, 2005.

J. Redemann, Q. Zhang, J. Livingston, P. Russell, Y. Shinozuka, A. Clarke, R. Johnson, and

R. Levy. Testing aerosol properties in modis collection 4 and 5 using airborne sunpho-

tometer observations in intex-b/milagro. Atmos. Chem. Phys., 9(21):8159–8172, 2009.

ISSN 1680-7316.



224

J.S. Reid and P.V. Hobbs. Physical and optical properties of young smoke from individual

biomass fires in Brazil. J. Geophys. Res.-Atmospheres, 103(D24), 1998.

J.S. Reid, P.V. Hobbs, R.J. Ferek, D.R. Blake, J.V. Martins, M.R. Dunlap, and C. Liousse.

Physical, chemical, and optical properties of regional hazes dominated by smoke in

Brazil. J. Geophys. Res.-Atmospheres, 103(D24), 1998.

J.S. Reid, T.F. Eck, S.A. Christopher, R. Koppmann, and O. Dubovik. A review of biomass

burning emissions part III: intensive optical properties of biomass burning particles. At-

mos. Chem. Phys. Discuss, 5:827–849, 2005a.

J.S. Reid, R. Koppmann, T.F. Eck, and D.P. Eleuterio. A review of biomass burning emis-

sions part II: intensive physical properties of biomass burning particles. Atmos. Chem.

Phys, 5(3):799–825, 2005b.

L. A. Remer, Y.J. Kaufman, B.N. Holben, A.M. Thompson, and D. McNamara. Biomass

burning aerosol size distribution and modeled optical properties. J. Geophys. Res., 103

(D24):31879–31892, 1998.

L. A. Remer, R. G. Kleidman, R. C. Levy, Y.J. Kaufman, D. Tanré, S. Mattoo, J. V. Martins,
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